Evaluation of Technologies for Stabilization of Road Soils Using Accelerated Weathering. A Strategy for Analysis of Impacts on Biodiversity

Keywords: Chemical stabilization materials, clay soils, weathering on road soils, sustainable road infrastructure, physicochemical and mechanical characterization


Road infrastructure construction generates direct impacts on biodiversity such as habitat fragmentation; death of animals by run over; deforestation, noise pollution and particulate matter; deterioration and depletion of natural resources due to the exploitation of sources of materials. Chemical stabilization is presented as a technical, economically and environmentally sustainable solution, which consists in the use of chemical additives to improve the engineering properties of the soil. This investigation evaluates different stabilization technologies under conditions of accelerated weathering, to establish its effect on performance and durability of road soils, as well as possible impacts on biodiversity compared to the use of traditional building materials. Seven chemicals were studied that were added on a soil previously characterized and classified. Specimens were compacted with the parameters obtained in the standard proctor and these specimens were subjected to continuous cycles of ultraviolet light (UVA) and condensation in QUV-SPRAY / 240 Accelerated Weathering Chamber at exposure times: 0, 108, 216, 324, 432 and 540 h. For each time, pH, conductivity, unconfined compressive strength and direct shear test were measured. The results obtained showed a good performance of the additive systems by presenting greater mechanical resistance with respect to the natural soil, this effect is especially greater in pozzolanic products. On the other hand, it is observed that when applying these products, the soil retains characteristics of the natural soil, lower emissions of particulate material and lower rates of heat absorption compared to a traditional pavement structure. The evaluation under conditions of accelerated weathering allows to estimate the long-term performance and the useful life of these materials; show advantages from an environmental and biodiversity conservation point of view, by mitigating impacts such as the edge effect by decreasing surface temperature conditions on roads.

Author Biographies

Eliana Llano *, Universidad de Antioquia, Colombia

Ingeniera Química, Grupo de Investigación Procesos Fisicoquímicos Aplicados PFA, Facultad de Ingeniería, Universidad de Antioquia, Medellín-Colombia, Eliana.llano@udea.edu.co

Diana Ríos , Universidad de Antioquia, Colombia

Ingeniera Química, Grupo de Investigación Procesos Fisicoquímicos Aplicados PFA, Facultad de Ingeniería, Universidad de Antioquia, Medellín-Colombia, dpatricia.rios@udea.edu.co

Gloria Restrepo , Universidad de Antioquia, Colombia

PhD. en Ciencias Químicas, Grupo de Investigación Procesos Fisicoquímicos Aplicados PFA, Facultad de Ingeniería, Universidad de Antioquia, Medellín-Colombia, gloria.restrepo1@udea.edu.co


A. Behnood, “Soil and clay stabilization with calcium-and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques,” Transp. Geotech., vol p 17, no. part A, pp. 14–32, Dec. 2018. https://doi.org/10.1016/j.trgeo.2018.08.002

P. G. Nicholson, “Chapter 13 - Thermal Treatments,” en Soil Improvement and Ground Modification Methods, P. G. Nicholson, Ed. Estados Unidos: Elsevier, 2015, pp. 319–339. https://doi.org/10.1016/B978-0-12-408076-8.00013-3

T. M. Petry; D. N. Little, “Review of Stabilization of Clays and Expansive Soils in Pavements and Lightly Loaded Structures—History, Practice, and Future,” J. Mater. Civ. Eng., vol. 14, no. 6, pp. 447–460, Dec. 2002. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)

A. Al-Khanbashi; M. El-Gamal, “Modification of sandy soil using water-borne polymer,” J. Appl. Polym. Sci., vol. 88, no. 10, pp. 2484–2491, Jun. 2003. https://doi.org/10.1002/app.12066

C. Zhou; S. Zhao; W. Huang; D. Li; Z. Liu, “Study on the Stabilization Mechanisms of Clayey Slope Surfaces Treated by Spraying with a New Soil Additive,” Appl. Sci., vol. 9, no. 6, p. 1245, Mar. 2019. https://doi.org/10.3390/app9061245

S. Rezaeimalek; J. Huang; S. Bin-Shafique, “Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization,” Constr. Build. Mater., vol. 146, pp. 210–220, Aug. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.093

I. G. Panova; D. D. Khaydapova; L. O. Ilyasov; A. B. Umarova; A. A. Yaroslavov, “Polyelectrolyte complexes based on natural macromolecules for chemical sand/soil stabilization,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 590, Apr. 2020. https://doi.org/10.1016/j.colsurfa.2020.124504

B. K. Cuipal Chávez, “Estabilización de la subrasante de suelo arcilloso con uso de polímero sintético en la carretera Chachapoyas – Huancas, Amazonas,” (Trabajo de grado), Universidad César Vallejo, Lima, Perú, 2018. https://alicia.concytec.gob.pe/vufind/Record/UCVV_810c6f937edaeeef7b58c859ab78fdd1/Details

T. A. Khan; M. R. Taha, “Effect of Three Bioenzymes on Compaction, Consistency Limits, and Strength Characteristics of a Sedimentary Residual Soil,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–9, Jun. 2015. https://doi.org/10.1155/2015/798965

A. AbouKhadra; A. F. Zidan; Y. Gaber, “Experimental evaluation of strength characteristics of different Egyptian soils using enzymatic stabilizers,” Cogent Eng., vol. 5, no. 1, pp. 1–11, Sep. 2018. https://doi.org/10.1080/23311916.2018.1517577

S. S. Kushwaha; D. Kishan; M. S. Chauhan; S. Khetawath, “Stabilization of Red mud using eko soil enzyme for highway embankment,” Mater. Today Proc., vol. 5, no. 9, part. 3, pp. 20500–20512, 2018. https://doi.org/10.1016/j.matpr.2018.06.427

J. Pooni; F. Giustozzi; D. Robert; S. Setunge; B. O’donnell, “Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation,” Transp. Geotech., vol. 21, Dec. 2019. https://doi.org/10.1016/j.trgeo.2019.100255

J. Camacho Tauta; Ó. J. Reyes Ortiz; C. Mayorga Antolínez, “Curado natural y acelerado de una arcilla estabilizada con aceite sulfonado,” Ing. y Desarro., no. 24, pp. 48–62, Jul. 2008. http://www.scielo.org.co/pdf/inde/n22/n24a05.pdf

A. Soltani; A. Deng; A. Taheri; M. Mirzababaei, “A sulphonated oil for stabilisation of expansive soils,” Int. J. Pavement Eng., vol. 20, no. 11, pp. 1285–1298, Dec. 2017. https://doi.org/10.1080/10298436.2017.1408270

G. J. Colmenares Roldán, “Desarrollo de estabilizantes de suelos para la construcción de infraestructura vial a partir de subproductos de la explotación minera,” (Tesis de Maestría), Facultad de Ingeniería, Universidad de Antioquia, Medellín, 2015. http://opac.udea.edu.co/cgi-olib/?infile=details.glu&loid=1415194&rs=13226129&hitno=3

L. D. Jerez; O. E. Gómez; C. A. Murillo, “Stabilization of Colombian lateritic soil with a hydrophobic compound (organosilane),” Int. J. Pavement Res. Technol., vol. 11, no. 6, pp. 639–646, Nov. 2018. https://doi.org/10.1016/j.ijprt.2018.06.001

C. C. Corzo Dardón, “Evaluación de las reacciones de hidratación y puzolánica del cemento portland con incorporación de puzolana natural y cal mediante termogravimetría y microscopía electrónica de barrido,” 2013. http://biblioteca.usac.edu.gt/tesis/08/08_1329_Q.pdf

O. J. Reyes Ortiz; J. F. Camacho Tauta, “Effect of ultraviolet radiation on an asphalt mixture’s mechanical and dynamic properties,” Ing. e Investig., vol. 28, no. 3, pp. 22–27, Sep. 2008. https://revistas.unal.edu.co/index.php/ingeinv/article/view/15116

R. Paolini et al., “Effects of soiling and weathering on the albedo of building envelope materials: Lessons learned from natural exposure in two European cities and tuning of a laboratory simulation practice,” Sol. Energy Mater. Sol. Cells, vol. 205, Feb. 2020. https://doi.org/10.1016/j.solmat.2019.110264

S. G. Croll, “Reciprocity in weathering exposure and the kinetics of property degradation,” Prog. Org. Coatings, vol. 127, pp. 140–150, Feb. 2019. https://doi.org/10.1016/j.porgcoat.2018.10.003

J. Andrade; V. Fernández-González; P. López-Mahía; S. Muniategui, “A low-cost system to simulate environmental microplastic weathering,” Marine Pollution Bulletin, vol. 149, Dec. 2019. https://doi.org/10.1016/j.marpolbul.2019.110663

P. Jayanthi; D. N. Singh, “Utilization of Sustainable Materials for Soil Stabilization: State-of-the-Art,” Advances in Civil Engineering Materials., vol. 5, no. 1, Feb. 2016. https://doi.org/10.1520/ACEM20150013

M. Al-Mukhtar; A. Lasledj; J.-F. Alcover, “Behaviour and mineralogy changes in lime-treated expansive soil at 20°C,” Appl. Clay Sci., vol. 50, no. 2, pp. 191–198, Oct. 2010. https://doi.org/10.1016/j.clay.2010.07.023

O. Amini; M. Ghasemi, “Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil,” Constr. Build. Mater., vol. 223, pp. 409–420, Oct. 2019. https://doi.org/10.1016/j.conbuildmat.2019.07.011

M. Taslimi Paein Afrakoti; A. Janalizadeh Choobbasti; M. Ghadakpour; S. Soleimani Kutanaei, “Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil,” Constr. Build. Mater., vol. 239, Apr. 2020. https://doi.org/10.1016/j.conbuildmat.2019.117848

M. Salimi; A. Ghorbani, “Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers,” Appl. Clay Sci., vol. 184, Jan. 2020. https://doi.org/10.1016/j.clay.2019.105390

H. Zhao; L. Ge; T. M. Petry; Y. Z. Sun, “Effects of chemical stabilizers on an expansive clay,” KSCE J. Civ. Eng., vol. 18, pp. 109–1017, Sep. 2013. https://doi.org/10.1007/s12205-013-1014-5

How to Cite
Llano, E., Ríos , D., & Restrepo , G. (2020). Evaluation of Technologies for Stabilization of Road Soils Using Accelerated Weathering. A Strategy for Analysis of Impacts on Biodiversity. TecnoLógicas, 23(49), 185-199. https://doi.org/10.22430/22565337.1624


Download data is not yet available.
Research Papers