Modeling Cutting Forces in High-Speed Turning using Artificial Neural Networks

Keywords: Cutting forces, Specific energy consumption, High-speed turning, Artificial neural networks


Cutting forces are very important variables in machining performance because they affect surface roughness, cutting tool life, and energy consumption. Reducing electrical energy consumption in manufacturing processes not only provides economic benefits to manufacturers but also improves their environmental performance. Many factors, such as cutting tool material, cutting speed, and machining time, have an impact on cutting forces and energy consumption. Recently, many studies have investigated the energy consumption of machine tools; however, only a few have examined high-speed turning of plain carbon steel. This paper seeks to analyze the effects of cutting tool materials and cutting speed on cutting forces and Specific Energy Consumption (SEC) during dry high-speed turning of AISI 1045 steel. For this purpose, cutting forces were experimentally measured and compared with estimates of predictive models developed using polynomial regression and artificial neural networks. The resulting models were evaluated based on two performance metrics: coefficient of determination and root mean square error. According to the results, the polynomial models did not reach 70 % in the representation of the variability of the data. The cutting speed and machining time associated with the highest and lowest SEC of CT5015-P10 and GC4225-P25 inserts were calculated. The lowest SEC values of these cutting tools were obtained at a medium cutting speed. Also, the SEC of the GC4225 insert was found to be higher than that of the CT5015 tool.

Author Biographies

Luis W. Hernández-González*, Universidad de Holguín, Cuba

Universidad de Holguín, Holguín-Cuba,

Dagnier A. Curra-Sosa, Universidad de Holguín, Cuba

Universidad de Holguín, Holguín-Cuba,

Roberto Pérez-Rodríguez, Universidad de Holguín, Cuba

Universidad de Holguín, Holguín-Cuba,

Patricia D.C. Zambrano-Robledo, Universidad Autónoma de Nuevo León, México

Universidad Autónoma de Nuevo León, San Nicolás de los Garza- México,


H. Schulz; T. Moriwaki, “High-Speed Machining,” CIRP Annals, vol. 41, no. 2, pp. 637-643, 1992.

J. Xie; F. Liu; H. Qiu, “An integrated model for predicting the specific energy consumption of manufacturing processes,” Int. J. Adv. Manuf. Technol., vol. 85, pp. 1339–1346, Nov. 2015.

R. Tanaka; Y. Yamane; K. Sekiya; N. Narutaki; T. Shiraga, “Machinability of BN free-machining steel in turning,” Int. J. Mach. Tools Manuf., vol. 47, no. 12-13, pp. 1971–1977, Oct. 2007.

B. Denkena; R. Ben-Amor; L. De-Leon-García; J. Dege, “Material specific definition of the high speed cutting range,” Int. J. Mach. Mach. Mater., vol. 2, no. 2, pp. 176-185, May. 2007.

W. S. Lin, “The reliability analysis of cutting tools in the HSM processes,” Archives of Materials Science and Engineering, vol. 30, no. 2, pp. 97-100, Apr. 2008.

M. Davies; A. L. Cooke; E. R. Larsen, “High bandwidth thermal microscopy of machining AISI 1045 steel,” CIRP Ann., vol. 54, no. 1, pp. 63-66, Jun. 2005.

S. A. Iqbal; P. T. Mativenga; M. A. Sheikh, “Characterization of machining of AISI 1045 steel over a wide range of cutting speeds. Part 1: Investigation of contact phenomena,” Proc. Inst. Mech. Eng. Part. B. J. Eng. Manuf., vol. 221, no. 5, pp. 909-916, May. 2007.

S. A. Iqbal; P. T. Mativenga; M. A. Sheikh, “Contact length prediction: mathematical models and effect of friction schemes on FEM simulation for conventional to HSM of AISI 1045 steel,” Int. J. Mach. Mach. Mater, vol. 3, no. 1-2, pp. 18-33, Mar. 2008.

S. A. Iqbal; P. T. Mativenga; M. A. Sheikh, “A comparative study of the tool–chip contact length in turning of two engineering alloys for a wide range of cutting speeds,” Int. J. Adv. Manuf. Technol., vol. 42, no. 30, pp. 30–40, Jul. 2009.

Y. Quan; Z. He; Y. Dou, “Cutting heat dissipation in high-speed machining of carbon steel based on the calorimetric method,” Front. Mech. Eng. China, vol. 3, pp. 175–179, Apr. 2008.

M. Stanford; P. M. Lister; C. Morgan; K. A. Kibble, “Investigation into the use of gaseous and liquid nitrogen as a cutting fluid when turning BS 970-80A15 (En32b) plain carbon steel using WC–Co uncoated tooling,” J. Mater. Process. Technol., vol. 209, no. 2, pp. 961-972, Jan. 2009.

A. E. Diniz; R. Micaroni; A. Hassui, “Evaluating the effect of coolant pressure and flow rate on tool wear and tool life in the steel turning operation,” Int. J. Adv. Manuf. Technol., vol. 50, pp. 1125-1133, Mar. 2010.

E. Y. Triblas Adesta; M. Riza; M. F. Hazza; D. Agusman, “Tool wear and surface finish investigation in high speed turning using cermet insert by applying negative rake angles,” European Journal of Scientific Research, vol. 38, no. 2, pp. 180-188, Dec. 2009.

E. Ozlu; A. Molinari; E. Budak, “Two-zone analytical contact model applied to orthogonal cutting," Mach. Sci. Techno, vol. 14, no. 3, pp. 323-343, Nov. 2010.

T. Özel; A. Esteves; J. Davim, “Neural network process modelling for turning of steel parts using conventional and wiper inserts”, Mach. Sci. Technol, vol. 35, no. 1/2, pp. 246-258, Jan. 2009.

M. F. Rajemi; P. T. Mativenga; A. Aramcharoen, "Sustainable machining: selection of optimum turning conditions based on minimum energy considerations," J. Clean. Prod, vol. 18, no. 10-11, pp. 1059–1065, Jul. 2010.

P. C. Zambrano Robledo; M. P. Guerrero Mata; L. W. Hernández Gonzalez; R. Pérez Rodriguez; L. Dumitrescu, “Efecto del volumen de metal cortado y de la velocidad de corte en el desgaste de la herramienta durante el torneado de alta velocidad del acero AISI 1045,” Ingeniería y Desarrollo, vol. 29, no.1, pp. 61-83, Jun. 2011.

W. Stachurski; S. Midera; B. Kruszyński, “Determination of mathematical formulae for the cutting force Fc during the turning of C45 steel,” Mechanics and Mechanical Engineering, vol. 16, no.2, pp. 73–79, Jan. 2012.

L. W. Hernández Gonzalez; R. Pérez Rodriguez; P. C. Zambrano Robledo; H. R. Siller Carrillo; H. Toscano Reyes, “Estudio del rendimiento del torneado de alta velocidad utilizando el coeficiente de dimensión volumétrica de la fuerza de corte resultante,” Rev. Metal., vol. 49, no.4, Jul.-Ago. 2013.

A. Qasim; S. Nisar; A. Shah; M. Saeed Khalid; M. Sheikh, “Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA,” Simul. Model. Pract. Theory, vol. 59, pp. 36–51, Dec. 2015.

E. A. Rahim; M. R. Ibrahim; A. A. Rahim; S. Aziz; Z. Mohid, “Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique,” Procedia CIRP, vol. 26, pp. 351-354, Mar. 2015.

G. Kant, “Prediction and optimization of machining parameters for minimizing surface roughness and power consumption during turning of AISI 1045 steel,” (PhD. Thesis), Birla Institute of Technology & Science, Pilani, India, 2016.

S. Paul; P. P. Bandyopadhyay; S. Paul, “Minimisation of specific cutting energy and back force in turning of AISI 1060 steel,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 232, no. 11, pp. 1-11, Jan. 2018.

K. Singh Sangwan; G. Kant, “Optimization of machining parameters for improving energy efficiency using integrated response surface methodology and genetic algorithm approach,” Procedia CIRP, vol. 61, pp. 517 – 522, Apr. 2017.

N. Xie; J. Zhou; B. Zheng, “Selection of optimum turning parameters based on cooperative optimization of minimum energy consumption and high surface quality,” Procedia CIRP, vol. 72, pp. 1469–1474, Jun. 2018.

A. T. Abbas; F. Benyahia; M. M. El Rayes; C. Pruncu; M. A. Taha; H. Hegab, “Towards optimization of machining performance and sustainability aspects when turning AISI 1045 steel under different cooling and lubrication strategies,” Materials, vol. 12, no. 18, pp. 2-17, Sep. 2019.

S. Makhfi; R. Velasco; M. Habak; K. Haddouche; P. Vantomme, “An optimized ANN approach for cutting forces prediction in AISI 52100 bearing steel hard turning,” Sci. Technol, vol. 3, no. 1, pp. 24-32, 2013.

Ş. Karabulut, “Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method,” Measurement, vol. 66, pp. 139–149, Apr. 2015.

S. Dahbi; L. Ezzine; H. El Moussami, “Modeling of cutting performances in turning process using artificial neural networks,” Int. J. Eng. Bus. Manag, vol. 9, pp. 1-13, Jul. 2017.

M. Hanief; M. F. Wani; M. S. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis,” Eng. Sci. Technol. an Int. J., vol. 20, no. 3, pp. 1220-1226, Jun. 2017.

F. Arnold; A. Hänel; A. Nestler; A. Brosius, “New approaches for the determination of specific values for process models in machining using artificial neural networks,” Procedia Manufacturing, vol. 11, pp. 1463-1470, 2017.

A. Zerti; M. A. Yallese; O. Zerti; M. Nouioua; R. Khettabi, “Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci, vol. 233, no. 13, pp. 4439-4462, Jan. 2019.

B. Peng; T. Bergs; D. Schraknepper; F. Klocke; B. Döbbeler, “A hybrid approach using machine learning to predict the cutting forces under consideration of the tool wear,” Procedia CIRP, vol. 82, pp. 302-307, 2019.

E. Wenkler; F. Arnold; A. Hänel; A. Nestler; A. Brosius, “Intelligent characteristic value determination for cutting processes based on machine learning,” Procedia CIRP, vol. 79, pp. 9-14, 2019.

M. Hashemitaheri; S. M. Reddy Mekarthy; H. Cherukuri, “Prediction of specific cutting forces and maximum tool temperatures in orthogonal machining by Support Vector and Gaussian Process Regression Methods," Procedia Manufacturing, vol. 48, pp. 1000-1008, 2020.

D. Curra-Sosa; R. Pérez-Rodríguez; R. Del-Risco-Alfonso, “Predictive Model for Specific Energy Consumption in the Turning of AISI 316L Steel," in Progress in Artificial Intelligence and Pattern Recognition. vol. 11047, Hernández Y., Milián V., J. Ruiz, Eds., ed Cham: Springer, 2018, pp. 51-58,

L. W. Hernández Gonzalez; Y. Seid Ahmed; R. Pérez Rodriguez; P. C. Zambrano Robledo; M. P. Guerrero Mata, “Selection of machining parameters using a correlative study of cutting tool wear in high-speed turning of AISI 1045 steel," J. Manuf. Mater. Process., vol. 2, no.4, pp. 1-14, Oct. 2018.

L. W. Hernández Gonzalez; R. Pérez Rodriguez; P. C. Zambrano Robledo; M. P. Guerrero Mata; L. Dumitrescu, “Análisis experimental del torneado de alta velocidad del acero AISI 1045,” Ingeniería Mecánica, vol. 15 pp. 10-22, Abr. 2012.

M. Paluszek; S. Thomas, MATLAB Machine Learning, 1st ed. New Jersey, USA: Apress, 2017.

How to Cite
L. W. Hernández-González, D. A. Curra-Sosa, R. Pérez-Rodríguez, and P. D. Zambrano-Robledo, “Modeling Cutting Forces in High-Speed Turning using Artificial Neural Networks”, TecnoL., vol. 24, no. 51, p. e1671, Apr. 2021.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

More on this topic