Damage Evaluation in Flexible Pavement Using Terrestrial Photogrammetry and Neural Networks

Keywords: Terrestrial photogrammetry, neural networks, pavement cracking, roadways, image processing

Abstract

In Colombia, road deterioration is assessed by means of road inventories and visual inspections. For this assessment, the Instituto Nacional de Vías (Colombia's National Road Institute) (abbreviated INVIAS in Spanish) uses the Vision Inspection de Zones et Itinéraires Á Risque (VIZIR) and Pavement Index Condition (PCI) methods. These two methods serve to determine the severity of damages in flexible and rigid pavements. However, they can be tedious and subjective and require an experienced evaluator, hence the need to develop new methods for road condition assessment. In this paper, we present a methodology to evaluate flexible pavement deterioration using terrestrial photogrammetry techniques and neural networks. The proposed methodology consists of six stages: (i) image capture, (ii) image preprocessing, (iii) segmentation via edge detection techniques, (iv) characteristic extraction, (v) classification using neural networks, and (vi) assessment of deteriorated areas. It is verified using real images of three different pavement distresses: longitudinal cracking, crocodile cracking, and pothole. As classifier, we use a multilayer neural network with a (12 12 3) configuration and trained using the Levenberg–Marquardt algorithm for backpropagation. The results show a classifier’s accuracy of 96 %, a sensitivity of 93.33 %, and a Cohen's Kappa coefficient of 93.67 %. Thus, our proposed methodology could pave the way for the development of an automated system to assess road deterioration, which may, in turn, reduce time and costs when designing road infrastructure maintenance plans.

Author Biographies

Lizette Tello-Cifuentes*, Universidad del Valle, Colombia

Cali-Colombia, lizette.tello@correounivalle.edu.co

Marcela Aguirre-Sánchez, Universidad Pontificia Bolivariana, Colombia

Medellín, Colombia, yurimarcela.aguirre@upb.edu.co

Jean P. Díaz-Paz, Institución Universitaria Antonio José Camacho, Colombia

Cali-Colombia, jpdiaz@uniajc.edu.co 

Francisco Hernández, Universidad del Valle, Colombia

Cali-Colombia, francisco.hernandez@correounivalle.edu.co

References

L. F. Macea; L. Morales; L. G. Márquez, “Un sistema de gestión de pavimentos basado en nuevas tecnologías para países en vía de desarrollo,” Ing. Investig. Tecnol., vol. 17, no. 2, pp. 223–236, Apr. 2016. https://doi.org/10.1016/j.riit.2016.06.007

V. G. Cerón, “Evaluación y comparación de metodologías VIZIR y PCI sobre el tramo de vía en pavimento flexible y rígido de la vía: Museo Quimbaya-CRQ Armenia Quindío (PR 00+000-PR 02+600),” (trabajo de especialización) Facultad de ingeniería y arquitectura, Universidad Nacional de Colombia. Manizales. 2006. http://bdigital.unal.edu.co/747/1/vivianaceronbermudez.2006.pdf

H. Rababaah; D. Vrajitoru; J. Wolfer, “Asphalt Pavement Crack Classification: A Comparative Study of Three AI Approaches: Multilayer Perceptron, Genetic Algorithms and Self-Organizing Maps,” (Tesis de Mestría), Indiana University South Bend, 2005. https://www.researchgate.net/publication/241525602_ASPHALT_PAVEMENT_CRACK_CLASSIFICATION_A_COMPARISON_OF_GA_MLP_AND_SOM

J. Valença; E. Júlio; H. Araújo, “Aplicações De Fotogrametria Na Monitorização De Estruturas,” in 2007 ICM In National Conference on A Instrumentação Científica e a Metrologia Aplicadas à Engenharia Civil, Lisboa 2007. pp. 2- 9. https://www.researchgate.net/publication/236941971_Aplicacoes_de_fotogrametria_na_monitorizacao_de_estruturas

Y. Sun; E. Salari; E. Chou, “Automated pavement distress detection using advanced image processing techniques,” in 2009 IEEE International Conference on Electro/Information Technology, Windsor. 2009, pp. 373–377. http://doi.org/10.1109/EIT.2009.5189645

S. Alamri, N. Kalyankar; K. S. D., “Image Segmentation by Using Edge Detection,” IJCSE Int. J. Comput. Sci. Eng., vol. 2, no. 3, 2010, pp. 804–807. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.9543&rep=rep1&type=pdf

H. Mu; D. Qi, “Pattern Recognition of Wood Defects Types Based on Hu Invariant Moments,” in 2009 2nd International Congress on Image and Signal Processing, Tianjin. 2009, pp. 1–5. https://doi.org/10.1109/CISP.2009.5303866

T. C. Ling, “Evaluation of cracks and disintegrations using close range digital photogrammetry and image processing technique,” (Tesis de Maestría), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 2005. http://eprints.utm.my/id/eprint/3484/

A. Ragnoli; M. R. De Blasiis; A. Di Benedetto, “Pavement Distress Detection Methods: A Review,” Infrastructures, vol. 3, no. 4, p. 58, Dec. 2018. https://doi.org/10.3390/infrastructures3040058

S. Wu; J. Fang; X. Zheng; X. Li, “Sample and Structure-Guided Network for Road Crack Detection,” IEEE Access, vol. 7, pp. 130032–130043, Sep. 2019. https://doi.org/10.1109/ACCESS.2019.2940767

L. Li; L. Sun; G. Ning; S. Tan, “Automatic Pavement Crack Recognition Based on BP Neural Network,” Promet Traffic Transportation, vol. 26, no. 1, pp. 11–22, Feb. 2014. https://doi.org/10.7307/ptt.v26i1.1477

M. Gavilán et al., “Adaptive Road Crack Detection System by Pavement Classification,” Sensors, vol. 11, no. 10, pp. 9628–9657, Oct. 2011. https://doi.org/10.3390/s111009628

A. Banharnsakun, “Hybrid ABC-ANN for pavement surface distress detection and classification,” Int. J. Mach. Learn. Cybern., vol. 8, no. 2, pp. 699–710, Apr. 2017. https://doi.org/10.1007/s13042-015-0471-1

H. Gong; Y. Sun; W. Hu; B. Huang, “Neural networks for fatigue cracking prediction using outputs from pavement mechanistic-empirical design,” Int. J. Pavement Eng., pp. 1–11, Feb. 2019. https://doi.org/10.1080/10298436.2019.1580367

G. K. Choudhary; S. Dey, “Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks,” in 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), China. 2012, pp. 404–411. https://doi.org/10.1109/ICACI.2012.6463195

M. Qi; B. Zhang; Y. Xu; H. Xin; G. Cheng, “Linear Camera Calibration by Single Image Based on Distortion Correction,” in Proceedings of the 2nd International Conference on Graphics and Signal Processing, Sydney. 2018, pp. 21–25. https://doi.org/10.1145/3282286.3282303

E. Rivas; J. Mendiola; G. Herrera; C. Gonzáles; M. Trejo; G. Ríos, “Mejora de Contraste y Compensación en Cambios de la Iluminación,” Comput. Sist., vol. 10, no. 4, pp. 357–371, 2007. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-55462007000200004

L. Ying; E. Salari, “Beamlet Transform-Based Technique for Pavement Crack Detection and Classification,” Comput. Aided Civ. Infrastruct. Eng., vol. 25, no. 8, pp. 572–580, Jun. 2010.

https://doi.org/10.1111/j.1467-8667.2010.00674.x

M. Carrasco Zambrano, “Segmentación de Fallas en Soldaduras Utilizando Técnicas de Procesamiento Digital de Imágenes,” (Tesis de Maestría), Universidad de Santiago De Chile, Chile, 2003. http://www.vizzion.cl/files/MasterThesis_carrasco.pdf

L. Ling; H. Peikang; W. Xiaohu; P. Xudong, “Image edge detection based on beamlet transform,” J. Syst. Eng. Electron., vol. 20, no. 1, pp. 1–5, Feb. 2009. https://ieeexplore.ieee.org/document/6074606

N. Wei; X. Zhao; X. Y. Dou; H. Song; T. Wang, “Beamlet Transform Based Pavement Image Crack Detection,” in 2010 International Conference on Intelligent Computation Technology and Automation, Changsha. 2010, pp. 881–883. https://doi.org/10.1109/ICICTA.2010.755

A. Ouyang; Y. Wang, “Edge Detection in Pavement Crack Image with Beamlet Transform,” in 2nd International Conference on Electronic & Mechanical Engineering and In-formation Technology, Sep. 2012, pp 2036-2039. https://doi.org/10.2991/emeit.2012.451

Z. Lin; X. Zhao, “Geometrical flow-guided fast beamlet transform for crack detection,” IET Image Process., vol. 12, no. 3, pp. 382–388, Nov. 2018. https://doi.org/10.1049/iet-ipr.2017.0747

A. Cubero-Fernandez; F. J. Rodriguez-Lozano; R. Villatoro; J. Olivares; J. M. Palomares, “Efficient pavement crack detection and classification,” EURASIP J. Image Video Process., vol. 2017, no. 39, pp. 1–11, Dec. 2017. https://doi.org/10.1186/s13640-017-0187-0

E. A. Sobrado Malpartida, “Sistema de visión artificial para el reconocimiento y manipulación de objetos utilizando un brazo robot,” (Tesis de Maestría), Pontificia Universidad Católica del Perú, Lima, 2003. http://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/68

M. E. G. Mital; H. V. Villaruel; E. P. Dadios, “Neural Network Implementation of Divers Sign Language Recognition based on Eight Hu-Moment Parameters,” in 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), Semarang. 2018, pp. 1–6. https://doi.org/10.1109/ICICOS.2018.8621642

J. Zhao; X. Wang, “Vehicle-logo recognition based on modified HU invariant moments and SVM,” Multimed. Tools Appl., vol. 78, no. 1, pp. 75–97, Oct. 2017. https://doi.org/10.1007/s11042-017-5254-0

H. S. Yoo; Y. S. Kim, “Development of a crack recognition algorithm from non-routed pavement images using artificial neural net-work and binary logistic regression,” KSCE J. Civ. Eng., vol. 20, no. 4, pp. 1151–1162, May 2016. https://doi.org/10.1007/s12205-015-1645-9

Universidad Nacional sede Bogotá; Ministerio de transporte Instituto Nacional de Vías INVIAS, “Estudio e investigación del estado actual de las obras de la red nacional de carreteras Convenio Interadministrativos 0587-03. Manual para la inspección visual de Pavimentos Flexibles.” Bogotá, octubre 2006. https://www.invias.gov.co/index.php/archivo-y-documentos/documentos-tecnicos/manuales-de-inspeccion-de-obras/974-manual-para-la-inspeccion-visual-de-pavimentos-flexibles/file

N.-D. Hoang; Q.-L. Nguyen, “A novel method for asphalt pavement crack classification based on image processing and machine learning,” Eng. Comput., vol. 35, no. 2, pp. 487–498, Apr. 2019. https://doi.org/10.1007/s00366-018-0611-9

How to Cite
[1]
L. Tello-Cifuentes, M. Aguirre-Sánchez, J. P. Díaz-Paz, and F. Hernández, “Damage Evaluation in Flexible Pavement Using Terrestrial Photogrammetry and Neural Networks”, TecnoL., vol. 24, no. 50, p. e1686, Jan. 2021.

Downloads

Download data is not yet available.
Published
2021-01-30
Section
Research Papers
Crossref Cited-by logo

More on this topic