Evaluating the Throughput of Real-time Distance Education Services Supported by a Mobile Ad Hoc Network

Keywords: Mobile Ad Hoc Network (MANET), Tele-education, Throughput, Quality of Service (QoS), Real-Time Services

Abstract

Tele-education went from being an option to becoming a necessity given the current public health problems. Due to this, the educational sector has included blended courses as part of its training offer. Mobile Ad Hoc Networks (MANETs) will therefore, become an important resource to work, under this class format, with students outside the classroom, in accordance with the standards recommended inside a university campus. MANETs require certain parameters that ensure the quality of communications and identify the factors that influence Quality of Service (QoS). The purpose of this study is to determine the factors that affect the quality of communications in a tele-education environment. For this purpose, the QoS of a MANET supporting a real-time video streaming is evaluated based on throughput. As a result, the main factors that directly or indirectly affect the operation of the network could be identified, which may help in making decisions regarding aspects such as the number of nodes and the node mobility speed. Moreover, the versatility and scalability of the MANET was proven, as when the number of nodes went from 5 to 10, throughput increased by 14 %. This also occurred with the transmission rate factor when the video was streamed in a channel with a variable bitrate (64–4096 kbps).

Author Biographies

Bayron Ospina Cifuentes*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, bayronospina@itm.edu.co

Alber Montoya Benítez , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, albermontoya@itm.edu.co

German David Góez, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, germangoez@itm.edu.co

Ricardo Alvarado Jaimes, Unidades Tecnológicas de Santander, Colombia

Unidades Tecnológicas de Santander, Santander-Colombia, ralvarado@correo.uts.edu.co

References

M. A. Jubair et al., “Bat Optimized Link State Routing Protocol for Energy-Aware Mobile Ad-Hoc Networks,” Symmetry., vol. 11, no. 11, p. 1409, Nov. 2019. https://doi.org/10.3390/sym11111409

M. Rath; B. Pati; B. K. Pattanayak, “Cross layer based QoS platform for multimedia transmission in MANET,” in Proceedings of 2017 11th International Conference on Intelligent Systems and Control, ISCO 2017, Coimbatore, 2017, pp. 402–407. https://doi.org/10.1109/ISCO.2017.7856026

G. A. Walikar; R. C. Biradar, “A survey on hybrid routing mechanisms in mobile ad hoc networks,” Journal of Network and Computer Applications, vol. 77. pp. 48–63, Jan. 2017. https://doi.org/10.1016/j.jnca.2016.10.014

A. Tiwari; M. Fatima; M. Manoria, “Survey of Impact of Transmission Range on MANET Routing Protocols,” Communications on Applied Electronics (CAE), vol. 7, no. 4, Jul. 2017. https://caeaccess.org/archives/volume7/number4/tiwari-2017-cae-652643.pdf

K. S. Ibarra-Lancheros; G. Puerto-Leguizamón; C. Suárez-Fajardo, “Quality of service evaluation based on network slicing for software-defined 5G systems,” TecnoLógicas, vol. 21, no. 43, pp. 27–41, Sep. 2018. https://doi.org/10.22430/22565337.1066

B. A. S. Roopa Devi; N. S. kaylyan Chafravarthy; M. N. Faruk, “Analysis of Manet Routing Protocol in Presence of Worm-Hole Attack Using Anova Tool,” International Journal of Pure and Applied Mathematics, vol. 117, no. 15, pp. 1043- 1054, 2017. https://acadpubl.eu/jsi/2017-117-15/articles/15/85.pdf

A. Hamza-Cherif; K. Boussetta; G. Diaz; F. Lahfa, “Performance evaluation and comparative study of main VDTN routing protocols under small- and large-scale scenarios,” Ad Hoc Networks, vol. 81, pp. 122–142, Dec. 2018. https://doi.org/10.1016/j.adhoc.2018.07.008

M. S. Daas; S. Chikhi, “Response surface methodology for performance analysis and modeling of manet routing protocols,” Int. J. Comput. Networks Commun., vol. 10, no. 1, pp. 45- 61, Jan. 2018. https://doi.org/10.5121/ijcnc.2018.10104

K. Sahithi, “Taguchi Design of Experiments for optimizing the Performance of AODV Routing Protocol in MANETS,” Int. J. Eng. Res. Technol., vol. 7, no. 04, pp. 519–527, 2018. https://www.ijert.org/taguchi-design-of-experiments-for-optimizing-the-performance-of-aodv-routing-protocol-in-manets

D. Betancur-Calderón; J. Moreno-Cadavid, “Una aproximación multi-agente para el soporte al proceso de extracción- transformación-carga en bodegas de datos,” TecnoLógicas, no. 28, pp. 89-107, Jun. 2012. https://doi.org/10.22430/22565337.15

J. T. Buitrago-Molina; J. S. Carvajal-Guerrero; C. A. Zapata-Castillo, “Plataforma virtual para el mando local y remoto de un brazo robótico de apoyo para la educación en ingeniería,” TecnoLógicas, vol. 17, no. 32, p. 67-74, Jan. 2014. https://doi.org/10.22430/22565337.206

A. O. Montoya B.; M. A. Muñoz G.; S. T. Kofuji, “Performance analysis of encryption algorithms on mobile devices,” in Proceedings - International Carnahan Conference on Security Technology, Medellín 2014. https://doi.org/10.1109/CCST.2013.6922058

B. Ospina, “Evaluación de la calidad de experiencia (QoE) de Servicios de Tele-educación en tiempo real soportados en redes móviles AD-HOC (MANETs),” Biblioteca digital de la UdeA, 2016. http://bibliotecadigital.udea.edu.co/bitstream/10495/13260/1/OspinaCifuentes_2016_Evaluaci%C3%B3nCalidadExperiencia.pdf

E. A. Carchipulla Morocho; V. Peralta Navarro, “Tele-educación como servicio (TEaaS) Proyecto integrador Dentalav alojado en la nube pública de Microsoft Azure,” Universidad Politécnica Salesiana, 2018.

S. Gogia, Tele-education in Fundamentals of Telemedicine and Telehealth, Academic Press, 2019, pp. 145–158.

R. K. McBain et al., “Impact of Project ECHO Models of Medical Tele-Education: a Systematic Review,” Journal of General Internal Medicine, vol. 34, no. 12 pp. 2842–2857, Dec-2019. https://doi.org/10.1007/s11606-019-05291-1

A. F. Silva; P. Neves; S. M. Rocha; C. M. Silva; A. A. Valente, “Optimization of continuous-flow heterogeneous catalytic oligomerization of 1-butene by design of experiments and response surface methodology,” Fuel, vol. 259, p. 116256, Jan. 2020. https://doi.org/10.1016/j.fuel.2019.116256

D. C. Montgomery, Design and Analysis of Experiments, Wiley Ninth Edition. 2017.

L. A. Bacci; L. G. Mello; T. Incerti; A. Paulo de Paiva; P. P. Balestrassi, “Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated factor scores,” Int. J. Prod. Econ., vol. 212, pp. 186–211, Jun. 2019. https://doi.org/10.1016/j.ijpe.2019.03.001

“npDvr software and downloads (CSDVR.exe).” 2.0. https://npdvr.software.informer.com/

“Olsr Switch.” http://www.olsr.org/docs/README-Olsr-Switch.html

N. Schweitzer; A. Stulman; T. Hirst; R. D. Margalit; A. Shabtai, “Network bottlenecks in OLSR based ad-hoc networks,” Ad Hoc Networks, vol. 88, pp. 36–54, May 2019. https://doi.org/10.1016/j.adhoc.2018.12.002

GitHub - ProjectSPAN/android-manet-visualizer: SPAN - Android Manet Visualization.” https://github.com/ProjectSPAN/android-manet-visualizer

Riverbed Technology “WinDump, version 3.9.5. 2018. https://www.winpcap.org/windump/

How to Cite
[1]
B. Ospina Cifuentes, A. Montoya Benítez, G. D. Góez, and R. Alvarado Jaimes, “Evaluating the Throughput of Real-time Distance Education Services Supported by a Mobile Ad Hoc Network”, TecnoL., vol. 24, no. 50, p. e1719, Jan. 2021.

Downloads

Download data is not yet available.
Published
2021-01-30
Section
Research Papers
Crossref Cited-by logo