Bioethanol Production from Yam (Dioscorea Rotundata) Using Simultaneous Saccharification and Fermentation (SSF)

Keywords: Yam, Starch, Enzymatic hydrolysis, Simultaneous saccharification and fermentation, Bioethanol


Yam is a starchy tuber mainly used in food preparation but with high potential applications in other fields such as pharmaceutical and bioplastic production. Colombia is among the top twelve yam producing countries worldwide and ranked first in terms of yield of tons per hectare planted. Yam production has specifically been concentrated in the Caribbean region, which is why this tuber is very little known in the inland regions. In this study, we evaluated Simultaneous Saccharification and Fermentation (SSF) for bioethanol production from yam (Dioscorea rotundata) using Saccharomyces bayanus. Ethanol production technologies involve the fermentation and hydrolysis of consumable raw materials (i.e., sugar cane and corn) which are quite mature around the world. For this reason, the process under analysis combined three phases: 60 min of gelatinization, enzymatic hydrolysis (divided into 40 min of liquefaction with α-amylase and 20 min of saccharification with glucoamylase), and 27 h of fermentation with no enzyme recovery. We used different yam concentrations (10, 12.5, 15, and 18 % w/w) in a wet basis. SSF was monitored along time, and total reducing sugars and ethanol concentration were quantified. The hydrolysis yield, was calculated based on the theoretical starch available in the tuber, was 90 % of starch mass for samples with a yam concentration of 10 and 15 % w/w. Regarding ethanol, the best result (a productivity of 0.19 g/Lh-1) was obtained with the sample with a yam concentration of 10 % w/w. Therefore, yam is a starchy material suitable to produce bioethanol via SSF.

Author Biographies

Alfredo Enrique Villadiego-del Villar, Universidad EAN, Colombia

Universidad EAN, Bogotá-Colombia,

Nicolás Sarmiento-Zea, Universidad EAN, Colombia

Universidad EAN, Bogotá-Colombia,

Jeffrey León-Pulido, Universidad EAN, Colombia

Universidad EAN, Bogotá-Colombia,

Lilia Carolina Rojas-Pérez*, Universidad EAN, Colombia

Universidad EAN, Bogotá-Colombia,


S. Anenberg; J. Miller; D. Henze; R. Minjares, “A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015,” The international council on clean transportation, USA, Tech. Rep., 2019.

O. O. Odubanjo; A. A. Olufayo; P. G. Oguntunde, “Water Use, Growth, and Yield of Drip Irrigated Cassava in a Humid Tropical Environment,” Soil & Water Res., vol. 6, no. 1, pp. 10-20, 2011.

A. N. Acevedo Mercado; I. S. Sandoval Assia; J. G. Salcedo Mendoza, “Productive development in yam (Dioscorea trifida and Dioscorea esculenta) under different hydric conditions,” Acta agron., vol. 64, no. 1, pp. 30-35, Jan. 2015.

K. Djaman et al.,“Crop Evapotranspiration, Irrigation Water Requirement and Water Productivity of Maize from Meteorological Data under Semiarid Climate,” Water, vol. 10, no. 4, pp. 405-422, Mar. 2018.

D. Polycarp; E. O. Afoakwa; A. S. Budu; E. Otoo, “Characterization of chemical composition and anti-nutritional factors in seven species within the Ghanaian yam (Dioscorea) germplasm,” Int. Food Res. J., vol. 19, no. 3, pp. 985-992, 2012.

S. Pradyawong; A. Juneja; M. Bilal Sadiq; A. Noomhorm; V. Singh, “Comparison of cassava starch with corn as a feedstock for bioethanol production,” Energies, vol. 11, no. 12, pp. 3476-3487, Dec. 2018.

M. I. Montoya; J. A. Quintero; O. J. Sánchez; C. A. Cardona, “Economic evaluation

of the process of obtaining fuel alcohol from sugar cane and corn,” Rev. Univ. EAFIT. vol. 41, no. 139, pp. 76-87, Jun. 2005.

H. I. Castaño; C. E. Mejía, “Ethanol production from cassava starch using the process strategy Simultaneous Saccharification-Fermentation,” Vitae, vol. 15, no. 2, pp. 251-258, 2008.

I. I. Mera; J. Carrera, “Obtaining glucose from yuca (manihot sculenta) starch,” Biotecnología en el Sector Agropecuario y Agroindustrial: BSAA, vol. 3, no. 1, pp. 54-63, Mar. 2005.

H. Castaño-Pelaez; M. Cardona Betancur; C. Mejía- Gómez; A. Acosta-Cárdenas, “Ethanol production from cassava flour in simultaneous enzymatic hydrolysis and fermentation system,” DYNA, vol. 78, no. 169, pp. 158-166, Oct. 2011.


Y. C. Reina, “El cultivo de ñame en el Caribe colombiano,” Documentos de Trabajo Sobre Economía Regional Banco de la Republica, Colombia, Reporte Tecnico., Reporte no. 168, 2012.

J. C. Udemezue; E. L. Nnabuife, “Challenges of Yam (Dioscorea sop.) Production by Farmers in Awka North Local Government Area of Anambra State, Nigeria,” Br. J. Res., vol.4, no. 2, pp. 11-14, May. 2017.

S. Papraneecharoen; N. Singphan, “Chemical properties and ethanol fermentation from Dioscorea sp,” PRRJ, vol.14, no. 1, pp. 105-116, Jan. 2019.

A. P. Moshi; J. P. Nyandele; H. P. Ndossi; S. M. Eva; K. M. Hosea, “Feasibility of bioethanol production from tubers of Dioscorea sansibarensis and Pyrenacantha kaurabassana,” Bioresource Technology, vol. 196, pp. 613-620, Nov. 2015.

R. C. Agu; J. W. Walker; B. N. Okolo; A. N. Moneke; O. C. Amadi; C. N. Eze, “Bio-ethanol production from Dioscorea Bulbifera tuber (local name: “Aduegbe”)-A renewable non-cultivated, non-food, waste material in Nigeria,” J. Solid Waste Technol. Manag., vol. 40, no. 2, pp. 152-159, May. 2014.

C. M. Osuji; E. C. Nwanekezi; E. M Amadi; C. A. Osuji, “Yield of ethanol from enzyme-hydrolyzed yam (Dioscorea rotundata) and cocoyam (Xanthosoma sagittifolium) flours,” Niger. Food J., vol. 28, no. 2, Dec. 2010.

J. D. Murgas; M. A. Vásquez, “Evaluación de la obtención de bioetanol a partir del almidón de ñame (dioscorea rotundata, dioscorea alata y dioscorea trífida) mediante la hidrólisis enzimática y posterior fermentación,” (Tesis de Maestría), Dept. Chem. Eng., San Buenaventura Univ., Cartagena, 2012.

G. L. Miller, “Use of Dinitrosalicilic acid reagent for determination of reducing sugar,” Anal. Chem., vol. 31, no. 3, pp. 426-428, Mar. 1959.

T. Siriwong et al., “Cold hydrolysis of cassava pulp and its use in simultaneous saccharification and fermentation (SSF) process for ethanol fermentation,” J. Biotechnol., vol. 292, pp. 57-63, Feb. 2019.

L. C. Rojas-Pérez; L. A. Caicedo-Mesa; J. L. Aguilar-Arias; L. R. Martínez-Ramírez, “Evaluación de la sacarificación de yuca mediante el proceso convencional y el proceso low-energy, para su posterior determinación de la cinética de reacción” Tecnológicas., no. 21, pp. 81-98, Dec. 2008.

E. Strak-Graczyk; M. Balcerek, “Effect of pre-hydrolysis on simultaneous saccharification and fermentation of native rye starch,” Food bioprocess tech., vol. 13, pp. 923-936, Apr. 2020.

F. A. Larrea et al., “Comparison of bioethanol production of starches from different andean tubers,” Chem. Eng. Trans., vol. 80, pp. 259-264, Apr. 2020.

G. Ye; D. Zeng; S. Zhang; M. Fan; H. Zhang; J, Xie “Ethanol production from mixtures of sugarcane bagasse and Dioscorea composita extracted residue with high solid loading,” Bioresour technol., vol. 257, pp. 23-29, Feb. 2018.

V. Puškaš; U. Miljić; J. Djuran; V. Vučurović, “The aptitude of commercial yeast strains for lowering the ethanol content of wine,” Food Sci. Nutr., vol. 8, no. 3, pp. 1489-1498, Jun. 2020.

P. R. Mohan; B. Ramesh; O. V. Reddy, “Production and optimization of ethanol from pretreated sugarcane bagasse using Saccharomyces bayanus in Simultaneous Saccharification and Fermentation,” Microbiology Journal, vol. 2, no. 2, pp. 52-63, Jun. 2012.

How to Cite
A. E. Villadiego-del Villar, N. Sarmiento-Zea, J. León-Pulido, and L. C. Rojas-Pérez, “Bioethanol Production from Yam (Dioscorea Rotundata) Using Simultaneous Saccharification and Fermentation (SSF)”, TecnoL., vol. 24, no. 50, p. e1724, Jan. 2021.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

More on this topic