Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: una alternativa para la obtención de metales preciosos y metales para la industria

Palabras clave: Proceso químico, hidrometalurgia, recuperación de residuos, desarrollo sostenible

Resumen

El objetivo de este artículo es revisar el contexto mundial, y especialmente el colombiano, respecto al manejo de los residuos de equipos eléctricos y electrónicos, su aprovechamiento, recuperación y los principales métodos para la extracción de metales base y preciosos de alto valor agregado. Para ello, se realizó una revisión bibliográfica para obtener las cantidades de residuos, sus componentes principales y los métodos de extracción de metales base y preciosos; para Colombia, se realizó un estudio de caso, en el que, mediante un proceso de hidrometalurgia aplicado a teléfonos celulares, se calcularon las cantidades de metales base y preciosos que se pueden obtener. Se encontró que solo se aprovecha el 15,5 % de los residuos electrónicos en el mundo, que los principales componentes reciclables son el hierro (Fe), el cobre (Cu), el aluminio (Al), el plomo (Pb), el níquel (Ni), la plata (Ag), el oro (Au) y el paladio (Pd), y que el uso de los residuos electrónicos como fuente de metales podría reducir el consumo de energía entre 60 % y 95 %. Para el estudio de caso en Colombia, se encontró que se podrían obtener 3,8 t/año de Cu, 3,5 t/año de Fe, 56,5 kg/año de Ag, 6 kg/año de Pd y 10 kg/año de Au. Se concluye que es viable la recuperación de metales a partir de residuos eléctricos y electrónicos y que se deben buscar alternativas para aprovecharlos debido a su potencial valor agregado.

Biografía del autor/a

Carlos E. Aristizábal-Alzate*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín- Colombia, carlosaristizabal207157@correo.itm.edu.co

José L. González-Manosalva, Instituto Tecnológico Metropolitano, Colombia

 Instituto Tecnológico Metropolitano Medellín -Colombia, josegonzalez@itm.edu.co

Andrés F. Vargas, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín -Colombia, andresvargas@itm.edu.co

Referencias bibliográficas

M. Ghodrat; M. A. Rhamdhani; G. Brooks; M. Rashidi; B. Samali, “A thermodynamic-based life cycle assessment of precious metal recycling out of waste printed circuit board through secondary copper smelting,” Environ. Dev., vol. 24, pp. 36–49, Dec. 2017. https://doi.org/10.1016/j.envdev.2017.07.001

A. Priya; S. Hait, “Toxicity characterization of metals from various waste printed circuit boards,” Process Saf. Environ. Prot., vol. 116, pp. 74–81, May. 2018. https://doi.org/10.1016/j.psep.2018.01.018

A. Işildar; E. R. Rene; E. D. van Hullebusch; P. N. L. Lens, “Electronic waste as a secondary source of critical metals: Management and recovery technologies,” Resour. Conserv. Recycl., vol 135. pp. 296-312, Agu. 2018. https://doi.org/10.1016/j.resconrec.2017.07.031

M. Kaya, Current WEEE recycling solutions. Elsevier Ltd, 2018.

A. Tuncuk; V. Stazi; A. Akcil; E. Y. Yazici; H. Deveci, “Aqueous metal recovery techniques from e-scrap : Hydrometallurgy in recycling,” Miner. Eng., vol. 25, no. 1, pp. 28–37, Jan. 2012. https://doi.org/10.1016/j.mineng.2011.09.019

L. A. Diaz; T. E. Lister, “Economic evaluation of an electrochemical process for the recovery of metals from electronic waste,” Waste Manag., vol. 74, pp. 384–392, Apr. 2018. https://doi.org/10.1016/j.wasman.2017.11.050

I. M. S. K. Ilankoon; Y. Ghorbani; M. N. Chong; G. Herath; T. Moyo; J. Petersen, “E-waste in the international context – A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery,” Waste Manag., vol. 82, pp. 258–275, Dec. 2018. https://doi.org/10.1016/j.wasman.2018.10.018

J. Li; Z. Ge; C. Liang; N. An, “Present status of recycling waste mobile phones in China: a review,” Environ. Sci. Pollut. Res., vol. 24, no. 20, pp. 16578–16591, May. 2017. https://doi.org/10.1007/s11356-017-9089-z

N. Gurita; M. Fröhling; J. Bongaerts, “Assessing potentials for mobile/smartphone reuse/remanufacture and recycling in Germany for a closed loop of secondary precious and critical metals,” J. Remanufacturing, vol. 8, pp. 1–22, 2018. https://doi.org/10.1007/S13243-018-0042-1

M. Goosey; R. Kellner, “Recycling technologies for the treatment of end of life printed circuit boards (PCBs),” Circuit World, vol. 29, no. 3, pp. 33–37, Sep. 2003. https://doi.org/10.1108/03056120310460801

J. Li; B. N. Lopez; L. Liu; N. Zhao; K. Yu; L. Zheng, “Regional or global WEEE recycling. Where to go?,” Waste Manag., vol. 33, no. 4, pp. 923–934, 2013. https://doi.org/10.1016/j.wasman.2012.11.011

A. Akcil; C. Erust; C. Sekhar Gahan; M. Ozgun; M. Sahin; A. Tuncuk, “Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants – A review,” Waste Manag., vol. 45, pp. 258–271, Nov. 2015. https://doi.org/10.1016/j.wasman.2015.01.017

P. Stuhlpfarrer; S. Luidold; H. Antrekowitsch, “Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts : A green and strategically advantageous solution,” J. Hazard. Mater., vol. 307, pp. 17–25, Apr. 2016. https://doi.org/10.1016/j.jhazmat.2015.12.007

R. Cayumil; R. Khanna; R. Rajarao; P. S. Mukherjee; V. Sahajwalla, “Concentration of precious metals during their recovery from electronic waste,” Waste Manag., vol. 57, pp. 121-130, Nov. 2016. https://doi.org/10.1016/j.wasman.2015.12.004

D. Ruiz; S. Bautista, “Factores influyentes en la generación de residuos de teléfonos móviles. Caso Colombia” Gestión y Ambient., vol. 19, no. 2, pp. 228–239, Ago. 2016. http://dx.doi.org/10.15446/ga.v19n2.54355

F. Fizaine, “The economics of recycling rate: New insights from waste electrical and electronic equipment,” Resour. Policy, vol. 67, pp. 101675, Aug. 2020. https://doi.org/10.1016/j.resourpol.2020.101675

Y. Lu; Z. Xu, “Precious metals recovery from waste printed circuit boards : A review for current status and perspective,” Resources, Conserv. Recycl., vol. 113, pp. 28–39, Oct. 2016. https://doi.org/10.1016/j.resconrec.2016.05.007

C. Hagelüken; C. W. Corti, “Recycling of gold from electronics: Cost-effective use through ‘design for recycling’,” Gold Bull., vol. 43, no. 3, pp. 209–220, Sep. 2010. https://doi.org/10.1007/BF03214988

Y. Lu; Q. Song; Z. Xu, “Integrated technology for recovering Au from waste memory module by chlorination process: Selective leaching, extraction, and distillation,” J. Clean. Prod., vol. 161, pp. 30–39, Sep. 2017. https://doi.org/10.1016/j.jclepro.2017.05.033

A. K. Awasthi; J. Li, “An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE,” Resour. Conserv. Recycl., vol. 126, no. November 2017 pp. 228–239, Nov. 2017. https://doi.org/10.1016/j.resconrec.2017.07.014

H. Oliveros Gómez, “Metodología para recuperar metales preciosos: oro, plata y grupo del platino, presentes en desechos electrónicos,”(Tesis de Maestría), Universidad Nacional de Colombia, Medellín, 2011. https://repositorio.unal.edu.co/bitstream/handle/unal/8704/98487077.2011.pdf?sequence=1&isAllowed=y

A. Gurgul; W. Szczepaniak; M. Zabłocka-Malicka, “Incineration and pyrolysis vs. steam gasification of electronic waste,” Sci. Total Environ., vol. 624, pp. 1119–1124, May. 2018. https://doi.org/10.1016/j.scitotenv.2017.12.151

M. Ghodrat; M. A. Rhamdhani; G. Brooks; S. Masood; G. Corder, “Techno economic analysis of electronic waste processing through black copper smelting route,” J. Clean. Prod., vol. 126, pp. 178–190, Jul. 2016, https://doi.org/10.1016/j.jclepro.2016.03.033

G. Chauhan; P. R. Jadhao; K. K. Pant; K. D. P. Nigam, “Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: Challenges & opportunities – A review,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 1288–1304. Feb. 2018. https://doi.org/10.1016/j.jece.2018.01.032

Ministerio de ambiente y desarrollo sostenible, Decreto 284. Por el cual se adiciona el Decreto 1076 de 2015, Único Reglamentario del Sector Ambiente y Desarrollo Sostenible, en lo relacionado con la Gestión Integral de los Residuos de Aparatos Eléctricos y Electrónicos - RAEE Y se dictan otras disposiciones, 2015, pp. 1–10. https://www.minambiente.gov.co/images/normativa/app/decretos/df-DECRETO%200284%20DE%202018%20-%20GESTION%20INTEGRAL%20RESIDUOS%20RAEE.pdf

M. Oguchi; H. Sakanakura; A. Terazono, “Toxic metals in WEEE: characterization and substance flow analysis in waste treatment processes.,” Sci. Total Environ., vol. 463–464, pp. 1124–1132, Oct. 2013. https://doi.org/10.1016/j.scitotenv.2012.07.078

M. Bigum; L. Brogaard; T. H. Christensen, “Metal recovery from high-grade WEEE: A life cycle assessment,” J. Hazard. Mater., vol. 207–208, pp. 8–14, Mar. 2012. https://doi.org/10.1016/j.jhazmat.2011.10.001

J. Romero Montenegro, “Colombia vs. la basura electrónica, un partido que va empatado,” (Trabajo de grado), Universidad del Rosario, 2014. https://repository.urosario.edu.co/bitstream/handle/10336/8902/53166329-2014.pdf?sequence=1

L. Zhang; Z. Xu, “A Review of Current Progress of Recycling Technologies for Metals from Waste Electrical and Electronic Equipment,” J. Clean. Prod., vol. 127, pp. 19-36, Jul. 2016. https://doi.org/10.1016/j.jclepro.2016.04.004

H. A. Arroyo; M. C. Fernández, “Tóxicos ambientales y su efecto sobre el neurodesarrollo,” Med. (Buenos Aires), vol. 73, no. suppl 1, pp. 93–102, 2013. https://www.medicinabuenosaires.com/PMID/24072057.pdf

Z. Sun et al., “Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 21–40, Sep. 2016. https://doi.org/10.1021/acssuschemeng.6b00841

M. Desmarais; F. Pirade; J. Zhang; E. R. Rene, “Biohydrometallurgical processes for the recovery of precious and base metals from waste electrical and electronic equipments: Current trends and perspectives,” Bioresour. Technol. Reports, vol. 11, p. 100526, Sep. 2020. https://doi.org/10.1016/j.biteb.2020.100526

The World Bank Group, “Commodity markets Outlook,’’ International Bank for Reconstruction and Development / World Bank. Washington DC, USA. A World Bank Report 2018 – Oct, Oct 2018. https://www.worldbank.org/en/research/commodity-markets

H. S. Park; Y. J. Kim, “A novel process of extracting precious metals from waste printed circuit boards: Utilization of gold concentrate as a fluxing material,” J. Hazard. Mater., vol. 365, Mar. 2019, pp. 659–664, 2018. https://doi.org/10.1016/j.jhazmat.2018.11.051

A. Marra; A. Cesaro; V. Belgiorno, “Separation efficiency of valuable and critical metals in WEEE mechanical treatments,” J. Clean. Prod., vol. 186, pp. 490–498, Jun. 2018. https://doi.org/10.1016/j.jclepro.2018.03.112

L. Cardona; P. A. Ortiz; A. Restrepo, “Reciclaje Tecnológico al Servicio de la Ciencia,” TecnoLógicas, p. 31, Jun. 2010. https://doi.org/10.22430/22565337.317

V. Sahajwalla; V. Gaikwad, “The present and future of e-waste plastics recycling,” Curr. Opin. Green Sustain. Chem., vol. 13, pp. 102–107, Oct. 2018. https://doi.org/10.1016/j.cogsc.2018.06.006

J. Hao; Y. Wang; Y. Wu; F. Guo, “Metal recovery from waste printed circuit boards: A review for current status and perspectives,” Resour. Conserv. Recycl., vol. 157, pp. 104787, Jun. 2020. https://doi.org/10.1016/j.resconrec.2020.104787

I. Román, “E-Waste en Colombia: El aporte de los operadores móviles en la reducción de la basura

electrónica - Estudio de caso,” GSMA. Feb. 2015. https://www.gsma.com/latinamerica/wp-content/uploads/2015/02/ewaste-colombia.pdf

Ministerio de Ambiente y Desarrollo Sostenible, Política nacional para la gestión integral de los residuos de aparatos eléctricos y electrónicos (RAEE). 2017. https://www.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/e-book_rae_/Politica_RAEE.pdf

J. Burlakovs et al., “On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste,” J. Clean. Prod., vol. 186, pp. 81–90, Jun. 2018. https://doi.org/10.1016/j.jclepro.2018.03.102

A. Serpe, “Green chemistry for precious metals recovery from WEEE’’ in Waste Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods, 1th ed., St. Louis, Missouri: Elsevier B.V., 2018, pp. 271–332. https://doi.org/10.1016/B978-0-08-102057-9.00011-1

B. Rodríguez; L. A González; N. Reyes; L. S. Reyes; A. F. Torres, “Sistema de gestión de residuos de aparatos eléctricos y electrónicos. Enfoque de dinámica de sistemas,” Sist. Telemática, vol. 11, no. 24, pp. 39–53, 2013. https://www.redalyc.org/articulo.oa?id=411534392003

ITU, Cuestión 8/2: Estrategias y políticas para la eliminación o reutilización adecuadas de residuos generados por las telecomunicaciones / TIC. 2017. https://www.itu.int/es/publications/ITU-D/pages/publications.aspx?parent=D-STG-SG02.08.1-2017&media=paper

J. Baptiste Bahers; J. Kim, “Regional approach of waste electrical and electronic equipment (WEEE) management in France,” Resour. Conserv. Recycl., vol. 129, pp. 45–55, Feb. 2018. https://doi.org/10.1016/j.resconrec.2017.10.016

A. K. Awasthi; J. Li, “An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE,” vol. 126, pp. 228-239, Nov. 2017. https://doi.org/10.1016/j.resconrec.2017.07.014

H. Y. Kang; J. M. Schoenung, “Economic analysis of electronic waste recycling: Modeling the cost and revenue of a materials recovery facility in California,” Environ. Sci. Technol., vol. 40, no. 5, pp. 1672–1680, Jan. 2006. https://doi.org/10.1021/es0503783

C. A. Kohl; L. P. Gomes, “Physical and chemical characterization and recycling potential of desktop computer waste, without screen,” J. Clean. Prod., vol. 184, pp. 1041–1051, May. 2018. https://doi.org/10.1016/j.jclepro.2018.02.221

M. K. Jaunich; J. DeCarolis; R. Handfield; E. Kemahlioglu-Ziya; S. R. Ranjithan; H. Moheb-Alizadeh, “Life-cycle modeling framework for electronic waste recovery and recycling processes,” Resour. Conserv. Recycl., vol. 161, pp. 104841, Oct. 2020. https://doi.org/10.1016/j.resconrec.2020.104841

S. Syed, “Recovery of gold from secondary sources-A review,” Hydrometallurgy, vol. 115–116, pp. 30–51, Mar. 2012. https://doi.org/10.1016/j.hydromet.2011.12.012

Y. Ding et al., “Recovery of precious metals from electronic waste and spent catalysts: A review,” Resour. Conserv. Recycl., vol. 141, no. August 2018, pp. 284–298, 2019. https://doi.org/10.1016/j.resconrec.2018.10.041

M. Sethurajan et al., ‘’Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes - a review’’, Critical Reviews in Environmental Science and Technology, vol. 49, no. 3, pp 212-275, Jan. 2019. https://doi.org/10.1080/10643389.2018.1540760

M. Wang; Q. Tan; J. F. Chiang; J. Li, “Recovery of rare and precious metals from urban mines—A review,” Front. Environ. Sci. Eng., vol. 11, no. 5, pp. 1–17, Jul. 2017. https://doi.org/10.1007/s11783-017-0963-1

H. S. Park; Y. S. Han; J. H. Park, “Massive Recycling of Waste Mobile Phones: Pyrolysis, Physical Treatment, and Pyrometallurgical Processing of Insoluble Residue,” ACS Sustain. Chem. Eng., vol. 7, no. 16, pp. 14119- 14125, Jul. 2019. https://doi.org/10.1021/acssuschemeng.9b02725

N. M. Tue; S. Takahashi; A. Subramanian; S. Sakai; S. Tanabe, “Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries.,” Environ. Sci. Process. Impacts, vol. 15, no. 7, pp. 1326–1331, Jun. 2013. https://doi.org/10.1039/c3em00086a

L. Rocchetti; F. VegliòB; Kopacek; F. Beolchini, “Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant,” Environ. Sci. Technol., vol. 47, no. 3, pp. 1581–1588, Jan. 2013. https://doi.org/10.1021/es302192t

A. Alzate; M. E. López; C. Serna, “Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate,” Waste Manag., vol. 57. pp. 113-120, Nov. 2016. https://doi.org/10.1016/j.wasman.2016.01.043

B. Debnath; R. Chowdhury; S. K. Ghosh, “Sustainability of metal recovery from E-waste,” Front. Environ. Sci. Eng., vol. 12, no. 2, pp. 1–12, Mar. 2018. https://doi.org/10.1007/s11783-018-1044-9

P. Evangelopoulos; E. Kantarelis; W. Yang, ‘’Waste Electric and Electronic Equipment: Current Legislations, Waste Management, and Recycling of Energy, Materials, and Feedstocks’’ in Sustainable Resource Recovery and Zero Waste Approaches, 1th ed., St. Louis, Missouri: Elsevier B.V., 2019, pp. 239-266. https://doi.org/10.1016/B978-0-444-64200-4.00017-7

V. H. Ha; J. C. Lee; T. H. Huynh; J. Jeong; B. D. Pandey, “Optimizing the thiosulfate leaching of gold from printed circuit boards of discarded mobile phone,” Hydrometallurgy, vol. 149, pp. 118–126, Oct. 2014. https://doi.org/10.1016/j.hydromet.2014.07.007

Z. Sun; Y. Xiao; H. Agterhui; J. Sietsma; Y. Yang, “Recycling of metals from urban mines - A strategic evaluation,” J. Clean. Prod., vol. 112, pp. 2977–2987, Jan. 2016. https://doi.org/10.1016/j.jclepro.2015.10.116

P. Quinet; J. Proost, A. Van. Lierde, “Recovery of precious metals from electronic scrap by hydrometallurgical processing routes,” Mining, Metallurgy & Exploration, vol. 22, no. 1, pp. 17–22, Feb. 2005. https://doi.org/10.1007/BF03403191

Y. Zhang; S. Liu; H. Xie; X. Zeng; J. Li, “Current Status on Leaching Precious Metals from Waste Printed Circuit Boards,” Procedia Environ. Sci., vol. 16, pp. 560–568, 2012. https://doi.org/10.1016/j.proenv.2012.10.077

Cómo citar
[1]
C. E. Aristizábal-Alzate, J. L. . González-Manosalva, y A. F. Vargas, «Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: una alternativa para la obtención de metales preciosos y metales para la industria», TecnoL., vol. 24, n.º 51, p. e1740, abr. 2021.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-04-26
Sección
Artículos de revisión

Métricas