Sedimentability of Flocculent Particles in Highly Colored Low Turbidity Water Coagulated with FeCl3 + PAC Versus PAC

Keywords: Low turbidity, sedimentability of particles, ferric chloride, polyaluminium chloride

Abstract

Highly colored low turbidity water, which is characteristic of high mountain sources, can limit the process of water treatment plants because it generates a low sedimentation rate of the flocs formed in the coagulation process. This article compares the sedimentation produced by the combination of ferric chloride (FeCl3) and polyaluminium chloride (PAC) used as primary coagulant and coagulation auxiliary, respectively, versus PAC as primary coagulant. This study was conducted at laboratory level using jar tests and natural water with the aforementioned characteristics. The sedimentation curves of each treatment option were determined and adjusted to linear regressions, which were statistically compared. For each curve, efficiency and theoretical turbidity were determined using three sedimentation rates: 1.3 cm/s, 0.9 cm/s, and 0.6 cm/s. The results indicate that the two processes were different (p=0.000), and the use of FeCl3+PAC generated higher sedimentation rates and lower theoretical residual turbidities, which improves the efficiency of the sedimentation process. In conclusion, the use of FeCl3 in combination with PAC represents a better technical option than PAC as primary coagulant because, in addition to optimizing the sedimentation process, it could help to increase the filtration run and reduce the consumption of water for filter washing.

Author Biographies

Javier Fernández, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán- Colombia, jefernandez@unicauca.edu.co

Susana Montenegro, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán- Colombia, lsmontenegro@unicauca.edu.co

Cristina Ledezma, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán- Colombia, cledezma@unicauca.edu.co

Jeffrey Yanza*, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán- Colombia, jeffrey@unicauca.edu.co

References

H. C. Lin; G. S. Wang, “Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation,” Desalination, vol. 270, no. 1–3, pp. 221–226, Apr. 2011. https://doi.org/10.1016/j.desal.2010.11.049

G. A. Edwards; A. Amirtharajah, “Removing Color Caused By Humic Acids.,” J. / Am. Water Work. Assoc., vol. 77, no. 3, pp. 50–57, Mar. 1985. https://doi.org/10.1002/j.1551-8833.1985.tb05508.x

P. Finkbeiner; G. Moore; R. Pereira; B. Jefferson; P. Jarvis, “The combined influence of hydrophobicity, charge and molecular weight on natural organic matter removal by ion exchange and coagulation,” Chemosphere, vol. 238, pp. 124633, Jan. 2020. https://doi.org/10.1016/j.chemosphere.2019.124633

E. P. Tangerino; L. Di Bernardo, “Remoção de substâncias húmicas por meio da oxidação com ozônio e peróxido de hidrogênio e FiME,” Eng. Sanit. e Ambient., vol. 10, no. 4, pp. 290–298, 2005. https://doi.org/10.1590/S1413-41522005000400005

J. J. Rook, “Chlorination reactions of fulvic acids in natural waters,” Environ. Sci. Technol., vol. 11, no. 5, pp. 478–482, May 1977. https://doi.org/10.1021/es60128a014

H. Selcuk; S. Meric; A. Nikolaou; M. Bekbolet, “A comparative study on the control of disinfection by-products (DBPs) and toxicity in drinking water,” Desalin. Water Treat. - desalin water treat, vol. 26, pp. 165–171, Aug. 2012. https://doi.org/10.5004/dwt.2011.2126

M. T. Olmedo Sanchez, “Subproductos de la desinfección del agua por el empleo de compuestos de cloro. Efectos sobre la salud,” Hig. Sanid. Ambient., vol. 342, pp. 335–342, 2008. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442007001100007

J. Yli-Kuivila; I. T. Miettinen; R. Laukkanen, “Potential of ferric and polyaluminium coagulants for nanofiltration pretreatment,” in Chemical Water and Wastewater Treatment, vol. 6, H. H. Hahn; E. Hoffmann; H. Odegaard, eds. Springer, 2000, pp. 181–190. https://doi.org/10.1007/978-3-642-59791-6_17

W. L. Ang; A. W. Mohammad; A. Teow; A. Benamor; N. Hilal, “Hybrid chitosanFeCl3 Coagulation-membrane processes Performance evaluation and membrane fouling study in removing natural organic matter,” Sep. Purif. Technol., vol. 152, pp. 23–31, Sep. 2015. https://doi.org/10.1016/j.seppur.2015.07.053

M. Kumari; S. K. Gupta, “A novel process of adsorption cum enhanced coagulation-flocculation spiked with magnetic nanoadsorbents for the removal of aromatic and hydrophobic fraction of natural organic matter along with turbidity from drinking water,” J. Clean. Prod., vol. 244, p. 118899, Jan. 2020. https://doi.org/10.1016/j.jclepro.2019.118899

F. Worrall; T. Burt, “Predicting the future DOC flux from upland peat catchments,” J. Hydrol., vol. 300, no. 1–4, pp. 126–139, Jan. 2005. https://doi.org/10.1016/j.jhydrol.2004.06.007

M. De Julio; T. S. De Julio; L. Di Bernardo, “Influence of the apparent molecular size of humic substances on the efficiency of coagulation using Fenton’s reagent,” An. Acad. Bras. Cienc., vol. 85, no. 2, pp. 833–847, Apr. 2013. https://doi.org/10.1590/S0001-37652013005000030

L. Fusheng; Y. Akira; A. Yuka, “Characterization of micro-flocs of NOM coagulated by PACI, alum and polysilicate-iron in terms of molecular weight and floc size,” Water Sci. Technol., vol. 57, no. 1, pp. 83–90, Jan. 2008. https://doi.org/10.2166/wst.2008.775

L. Di Bernardo; C. G. da N. Mendes; A. F. Guimaraes, “Coagulaçao-floculaçao de águas com turbidez ou cor elevada-parte I e 2,” Revista DAE, vol. 47, no. 150. pp. 227–231, 1987. http://revistadae.com.br/site/artigo/1398-Coagulacao-floculacao-de-aguas-com-turbidez-ou-cor-elevada---parte-II

J. Arboleda, Teoría y práctica de la purificación del agua. Bogotá, 1992. https://cidta.usal.es/cursos/etap/modulos/libros/teoria.pdf

W. Buytaert; R. Célleri; B. De Biévre; F. Cisneros, “Hidrología del páramo andino: propiedades, importancia y vulnerabilidad,” pp. 1–26. https://paramo.cc.ic.ac.uk/pubs/ES/Hidroparamo2.pdf

J. Yanza-López; R. Rivera-Hernández; L. Gómez-Torres; C. Zafra-Mejía, “Evaluación de FeCl3 y PAC para la potabilización de agua con alto contenido de color y baja turbiedad,” TecnoLógicas, vol. 22, no. 45, pp. 9–21, 2019. https://doi.org/10.22430/22565337.1085

Ministerio de Vivienda, Ciudad y Territorio de Colombia, Resolución 0330 de 2017. 2017, p. 77. https://www.redjurista.com/Documents/resolucion_330_de_2017_ministerio_de_vivienda,_ciudad_y_territorio.aspx#/

A. Muñoz; V. Valencia, “Estudio de los parámetros óptimos de tratabilidad para la fuente de abastecimiento de la planta Palacé, en el municipio de Popayán, departamento del Cauca,” Universidad del Cauca, 2013.

ICONTEC, “Procedimiento para el ensayo de coagulación-floculación en un recipiente con agua o método de jarras” Norma Tecnica Colombiana NTC 3903:2010, Apr. 2010. https://tienda.icontec.org/gp-procedimiento-para-el-ensayo-de-coagulacion-floculacion-en-un-recipiente-con-agua-o-metodo-de-jarras-ntc3903-2010.html

R. Lai; H. Hudson; J. Singley, “Velocity Gradient Calibration of Jar-Test Equipment.” Journal (American Water Works Association), vol. 67, no. 10, pp. 553-557, 1975. https://www.jstor.org/stable/41267756?seq=1

H. Mahanna; M. Fouad; K. Radwan; H. Elgamal, “Predicting of Effluent Turbidity from Deep Bed Sand Filters Used in Water Treatment,” Int. J. Sci. Eng. Res., vol. 6, no. 9, pp. 621–626, Sep. 2015. https://doi.org/10.14299/ijser.2015.09.006

A. Upton; B. Jefferson; G. Moore; P. Jarvis, “Rapid gravity filtration operational performance assessment and diagnosis for preventative maintenance from on-line data,” Chem. Eng. J., vol. 313, pp. 250–260, Apr. 2017. https://doi.org/10.1016/j.cej.2016.12.047

H. Mahanna; K. Radwan; M. Fouad; H. Elgamal, “Effect of Operational Conditions on Performance of Deep sand Filter in Turbidity Removal,” Trends Tech. Sci. Res., vol. 2, no. 5, pp. 1–7, Aug. 2018. https://www.researchgate.net/publication/326998279_Effect_of_Operational_Conditions_on_Performance_of_Deep_Sand_Filter_in_Turbidity_Removal

D. Ratnayaka; M. Brandt; M. Johnson, Twort’s Water Supply. Elsevier, Burlington, USA, 2009.

Ministerio de la protección social y Ministerio de ambiente, vivienda y desarrollo territorial, Resolución 2115, Junio de 2007. https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislaci%C3%B3n_del_agua/Resoluci%C3%B3n_2115.pdf

World Health Organization, Guidelines for Drinking-Water Quality, Second Edi. Hong Kong: WHO, 2002. https://books.google.com.co/books?hl=es&lr=&id=tDLdvJQAgmAC&oi=fnd&pg=PP7&dq=World+Health+Organization,+Guidelines+for+Drinking-Water+Quality+4th+edition&ots=f-I91c1CYA&sig=Mv5ygw-p1Rq9Nc4Hyao6UDtN7d4#v=onepage&q&f=false

EPA, “Long term 1 Enhanced surface water treatment Guidance Manual.” USA, p. 254, 2004. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=30005ZHV.txt

P. Hulck; M. Elmelko, Filter operation effects on pathogen passage. Washington: AWWA Research Foundation, 2001.

How to Cite
[1]
J. Fernández, S. Montenegro, C. Ledezma, and J. Yanza, “Sedimentability of Flocculent Particles in Highly Colored Low Turbidity Water Coagulated with FeCl3 + PAC Versus PAC”, TecnoL., vol. 24, no. 51, p. e1789, Feb. 2021.

Downloads

Download data is not yet available.
Published
2021-02-26
Section
Research Papers
Crossref Cited-by logo