Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: una revisión

Palabras clave: Compuestos fenólicos, extracción por ultrasonido, Vitis vinifera, capacidad antioxidante

Resumen

Los compuestos fenólicos han sido de gran relevancia para su aplicación en industrias como la farmacéutica y la alimentaria. Esto ha llevado al estudio de métodos de extracción eficientes en cuanto a rendimiento, capacidad antioxidante y costos de operación. La extracción asistida por ultrasonido ha reportado resultados superiores en comparación con los métodos de extracción convencionales, además de ser amigable con el medio ambiente. En este sentido, este artículo tiene como objetivo evaluar el efecto de los parámetros operativos reportados con mejores resultados de extracción asistida por ultrasonido para la obtención de polifenoles en diversas variedades de uva. La revisión fue realizada en bases de datos indexadas filtrada a publicaciones en el período comprendido entre 2013 y 2020. El análisis de los resultados reportados permitió identificar los parámetros más críticos como la variación de frecuencia, potencia y tiempo, además de los rangos óptimos de operación evaluados en cada estudio que conllevaron a alcanzar un mayor rendimiento de los polifenoles totales presentes en las diferentes matrices de la uva. De igual manera, fue posible evidenciar la afectación de la temperatura sobre la concentración de los principales compuestos fenólicos característicos de la uva. Finalmente, cada transformación y resultado evaluado fue discutido a la luz de los principios físicos y químicos favorecidos por el método empleado, así como las características de termosensibilidad de los principales compuestos fenólicos como las antocianinas y flavonoles que afectan su propiedad funcional de capacidad antioxidante, de mayor interés en aplicaciones alimentarias y farmacéuticas a escala industrial.

Biografía del autor/a

Carolina Ramón , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, carolinaramon239578@correo.itm.edu.co

Maritza Andrea Gil-Garzón*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, maritzagil@itm.edu.co

Referencias bibliográficas

G. Mercado-Mercado; L. de la R. Carrillo; A. Wall-Medrano; J. A. L. Díaz; E. Álvarez-Parrilla, “Revisión Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México,” Nutr. Hosp., vol. 28, no. 1, pp. 36–46, Jan. 2013. http://dx.doi.org/10.3305/nh.2013.28.1.6298

B. E. García Triana; A. Saldaña Bernabeu; L. Saldaña García, “El estrés oxidativo y los antioxidantes en la prevención del cáncer,” Rev haban cienc méd, vol. 12, no. 2, pp. 187–196, Abr. 2013. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2013000200005#:~:text=Introducci%C3%B3n%3A%20el%20estr%C3%A9s%20oxidativo%20participa,mecanismos%20celulares%20de%20defensa%20antioxidante.

F. C. Padilla; A. M. Rincón; L. Bou-Rached, “Contenido de polifenoles y actividad antioxidante de varias semillas y nueces,” Arch. Latinoam. Nutr., vol. 58, no. 3, pp. 303–308, 2008. http://ve.scielo.org/scielo.php?pid=S0004-06222008000300014&script=sci_abstract#:~:text=M%20y%20BOU%2DRACHED%2C%20L,de%20varias%20semillas%20y%20nueces.&text=Esta%20propiedad%20se%20debe%20a,mezcla%20compleja%20de%20compuestos%20fen%C3%B3licos

G. D. González-Neves; G. C. Gatto, “Characterization of the phenolic composition and the color of Uruguayan Tannat, Cabernet Sauvignon and Merlot red wines,” Inf. Tecnol., vol. 12, no. 3, pp. 9–14, 2001. https://www.researchgate.net/publication/297478540_Characterization_of_the_phenolic_composition_and_the_color_of_Uruguayan_Tannat_Cabernet_Sauvignon_and_Merlot_red_wines

M. Cañibano Alberola, “Efecto del perfil fenólico sobre las características antioxidantes de vinos tintos,” (Tesis de Maestría), Escuela técnica superior de ingenierías agrarias depalencia, Universidad de Valladolid, pp. 1-30, 2012. https://1library.co/document/oy88v84y-efecto-perfil-fenolico-caracteristicas-antioxidantes-vinos-tintos.html

L. F. Ribeiro; R. H. Ribani; T. M. G. Francisco; A. A. Soares; R. Pontarolo; C. W. I. Haminiuk, “Profile of bioactive compounds from grape pomace (Vitis vinifera and Vitis labrusca) by spectrophotometric, chromatographic and spectral analyses,” J. Chromatogr. B., vol. 1007, pp. 72–80, Dec. 2015. https://doi.org/10.1016/j.jchromb.2015.11.005

C. Dani et al., “Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage,” Toxicol. Vitr., vol. 24, no. 1, pp. 148–153, Feb. 2010. https://doi.org/10.1016/j.tiv.2009.08.006

R. Romero-Díez et al., “Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees,” Food Chem., vol. 272, pp. 258–266, Jan. 2019. https://doi.org/10.1016/j.foodchem.2018.08.016

M. A. Maza; J. M. Martínez; C. Delso; A. Camargo; J. Raso; I. Álvarez, “PEF-dependency on polyphenol extraction during maceration/fermentation of Grenache grapes,” Innov. Food Sci. Emerg. Technol., vol. 60, Mar. 2020. https://doi.org/10.1016/j.ifset.2020.102303

N. Boussetta et al., “Scale-up of high voltage electrical discharges for polyphenols extraction from grape pomace: Effect of the dynamic shock waves,” Innov. Food Sci. Emerg. Technol., vol. 16, pp. 129–136, Oct. 2012. https://doi.org/10.1016/j.ifset.2012.05.004

M. Bonfigli; E. Godoy; M. A. Reinheimer; N. J. Scenna, “Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling,” J. Food Eng., vol. 207, pp. 56–72, Aug. 2017. https://doi.org/10.1016/j.jfoodeng.2017.03.011

G. A. Garzón, “Las antocianinas como colorantes naturales y compuestos bioactivos: revisión,” Acta Biol. Colomb., vol. 13, no. 3, pp. 27–36, Dec. 2008. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2008000300002

A. V. Ruales-Salcedo; A. F. Rojas-González; C. A. Cardona-Alzate, “Obtención de compuestos fenólicos a partir de residuos de uva isabella (Vitis labrusca).” Biotecnol. en el Sect. Agropecu y Agroindustrial, vol. 15, pp. 72–79, 2017. https://dialnet.unirioja.es/servlet/articulo?codigo=6230651

G. González Neves; G. Gil; F. Guzman; M. Ferrer Baccino, “Potencial polifenólico de la uva índices propuestos y posibles aplicaciones,” Comun. Sci., vol. 2, no. 2, pp. 57–69, 2011. https://dialnet.unirioja.es/servlet/articulo?codigo=3884061

J. M. Pérez‐Ortiz; L. F. Alguacil; E. Salas; I. Hermosín‐Gutiérrez; S. Gómez‐Alonso; C. González‐Martín, “Antiproliferative and cytotoxic effects of grape pomace and grape seed extracts on colorectal cancer cell lines,” Food Sci. Nutr., vo. 7, no. 9, pp. 2948-2957, Sep. 2019. https://doi.org/10.1002/fsn3.1150

C. Sedem Dzah et al., “The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review,” Food Biosci., vol. 35, Jun. 2020. https://doi.org/10.1016/j.fbio.2020.100547

P. J. Arauzo; M. Lucian; L. Du; M. P. Olszewski; L. Fiori; A. Kruse, “Improving the recovery of phenolic compounds from spent coffee grounds by using hydrothermal delignification coupled with ultrasound assisted extraction,” Biomass and Bioenergy, vol. 139, Aug. 2020. https://doi.org/10.1016/j.biombioe.2020.105616

Y. Picó, “Ultrasound-assisted extraction for food and environmental samples,” TrAC Trends Anal. Chem., vol. 43, pp. 84–99, Feb. 2013. https://doi.org/10.1016/j.trac.2012.12.005

Z. Rodríguez Riera; M. Robaina Mesa; U. J. Jáuregui Haza; A. Blanco González; J. E. Rodríguez-Chanfrau, “Empleo de la radiación ultrasónica para la extracción de compuestos bioactivos provenientes de fuentes naturales. Estado actual y perspectivas,” Cenic, vol. 45, pp. 139–147, 2014. https://www.researchgate.net/publication/270273043_Empleo_de_la_radiacion_ultrasonica_para_la_extraccion_de_compuestos_bioactivos_provenientes_de_fuentes_naturales_Estado_actual_y_perspectivas

G. Cravotto; P. Cintas, “Power ultrasound in organic synthesis: Moving cavitational chemistry from academia to innovative and large-scale applications,” Chem. Soc. Rev., vol. 35, no. 2, pp. 180–196, Oct. 2005. https://doi.org/10.1039/B503848K

G. V. S. Bhagya Raj; K. K. Dash, “Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies,” Ultrason. Sonochem., vol. 68, Nov. 2020. https://doi.org/10.1016/j.ultsonch.2020.105180

M. Reyes González-Centeno; K. Knoerzer; H. Sabarez; S. Simal; C. Rosselló; A. Femenia, “Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) - A response surface approach,” Ultrason. Sonochem., vol. 21, no. 6, pp. 2176–2184, Nov. 2014. https://doi.org/10.1016/j.ultsonch.2014.01.021

S. Kaur Bhangu; M. Ashokkumar; J. Lee, “Ultrasound Assisted Crystallization of Paracetamol: Crystal Size Distribution and Polymorph Control,” Cryst. Growth Des., vol. 16, no. 4, pp. 1934–1941, Mar. 2016. https://doi.org/10.1021/acs.cgd.5b01470

C. B. Da Rocha; C. P. Zapata Noreña, “Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace,” Int. J. Food Eng., vol. 16, no. 1–2, pp. 1–10, Jan. 2020. https://doi.org/10.1515/ijfe-2019-0191

M. Kaleem; A. Ahmad; R. M. Amir; G. K. Raja, “Ultrasound-assisted phytochemical extraction condition optimization using response surface methodology from perlette grapes (Vitis vinifera),” Processes, vol. 7, no. 10, Oct. 2019. https://doi.org/10.3390/pr7100749

C. Da Porto; E. Porretto; D. Decorti, “Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds,” Ultrason. Sonochem., vol. 20, no. 4, pp. 1076–1080, Jul. 2013. https://doi.org/10.1016/j.ultsonch.2012.12.002

C. D. Fernando; P. Soysa, “Extraction Kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing,” Nutr. J., vol. 14, pp. 1–7, Jul. 2015. https://doi.org/10.1186/s12937-015-0060-x

N. Masuda; A. Maruyama; T. Eguchi; T. Hirakawa; Y. Murakami, “Influence of Microbubbles on Free Radical Generation by Ultrasound in Aqueous Solution: Dependence of Ultrasound Frequency,” J. Phys. Chem. B, vol. 119, no. 40, pp. 12887–12893, Sep. 2015. https://doi.org/10.1021/acs.jpcb.5b05707

K. Lukić et al., “Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine,” Ultrason. Sonochem., vol. 59, Dec. 2019. https://doi.org/10.1016/j.ultsonch.2019.104725

M. L. Moldovan; C. Bogdan; S. Iurian; C. Roman; I. Oniga; D. Benedec, “Phenolic content and antioxidant capacity of pomace and canes extracts of some Vitis vinifera varieties cultivated in Romania,” Farmacia, vol. 68, no. 1, pp. 15–21, 2020. https://doi.org/10.31925/farmacia.2020.1.3

A. Natolino; C. Da Porto, “Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds,” Chem. Eng. Res. Des., vol. 156, pp. 1–12, Apr. 2020. https://doi.org/10.1016/j.cherd.2020.01.009

C. F. Timberlake, “Anthocyanins—Occurrence, extraction and chemistry,” Food Chem., vol. 5, no. 1, pp. 69–80, Mar. 1980. https://doi.org/10.1016/0308-8146(80)90065-5

G. F. Deng; D. P. Xu; S. Li; H. Bin Li, “Optimization of ultrasound-assisted extraction of natural antioxidants from sugar apple (Annona squamosa L.) peel using response surface methodology,” Molecules, vol. 20, no. 11, pp. 20448–20459, Nov. 2015. https://doi.org/10.3390/molecules201119708

C. Da Porto; A. Natolino; D. Decorti, “The combined extraction of polyphenols from grape marc: Ultrasound assisted extraction followed by supercritical CO2 extraction of ultrasound-raffinate,” Lwt - Food Science and Technology, vol. 61, no. 1, pp. 98–104, Apr. 2015. https://doi.org/10.1016/j.lwt.2014.11.027

P. Terpinc; T Polak; N. Poklar Ulrih; H. Abramovic, “Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts,” J Agric Food Chem., vol. 59, no. 16, pp. 8639-8645, Jul. 2011. https://doi.org/10.1021/jf2016072

S. Badui Dergal, Química de los alimentos, 4ta ed. Naucalpan de Juárez, México: Pearson Educación 2006.

N. A. Díaz et al., “8 . Espectrofometría : Espectros de absorción y cuantificación colorimétrica de biomoléculas,” Universidad de Córdoba, pp. 1–8. https://www.uco.es/dptos/bioquimica-biol-mol/pdfs/08_ESPECTROFOTOMETRIA.pdf

Ó. A. Muñoz-Bernal et al., “Nuevo acercamiento a la interacción del reactivo de folin-ciocalteu con azúcares durante la cuantificación de polifenoles totales,” TIP, vol. 20, no. 2, pp. 23–28, Jul. 2017. https://doi.org/10.1016/j.recqb.2017.04.003

J. Pérez-Jiménez, “Metodología para la Evaluación de Ingredientes Funcionales Antioxidantes. Efecto de Fibra Antioxidante de Uva en status antioxidante y parámetros de riesgo cardiovascular en humanos,” (Tesis Doctoral), Departamento de Metabolismo y Nutrición, Instituto del Frío (CSIC), 2007. https://repositorio.uam.es/bitstream/handle/10486/1671/6494_perez_jimenez_jara.pdf?sequence=1

C. Zapata; P. Zapata, “Estandarización del Método ORAC como Herramienta Básica de Análisis de la Capacidad Antioxidante,” Universidad CES, pp. 1–15, 2019. https://repository.ces.edu.co/bitstream/10946/3943/8/1017248569_2019.pdf

I. F. F. Benzie; J. J. Strain, “The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘Antioxidant Power”: The FRAP Assay,” Anal. Biochem., vol. 239, no. 1, pp. 70–76, Jul. 1996. https://doi.org/10.1006/abio.1996.0292

E. Guija-Poma; M. Á. Inocente-Camones; J. Ponce-Pardo; E. Zarzosa-Norabuena, “Evaluación de la técnica 2,2-Difenil-1-Picrilhidrazilo (DPPH) para determinar capacidad antioxidante,” Horiz. Médico, vol. 15, no. 1, pp. 57–60, Feb. 2015. https://doi.org/10.24265/horizmed.2015.v15n1.08

C. Huet-Breña, “Métodos analíticos para la determinación de antioxidantes en muestras biológicas,” (Trabajo de grado), Universidad complutense madrid, pp. 1–20, 2017. https://eprints.ucm.es/id/eprint/54713/

A. C. de Camargo et al., “Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products,” Food Chem., vol. 290, pp. 229–238, Aug. 2019. https://doi.org/10.1016/j.foodchem.2019.03.145

K. Thaipong; U. Boonprakob; K. Crosby; L. Cisneros-Zevallos; D. Hawkins Byrne, “Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts,” J. Food Compos. Anal., vol. 19, no. 6–7, pp. 669–675, Nov. 2006. https://doi.org/10.1016/j.jfca.2006.01.003

C. Drosou; K. Kyriakopoulou; A. Bimpilas; D. Tsimogiannis; M. Krokida, “A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts,” Ind. Crops Prod., vol. 75, pp. 141–149, Nov. 2015. https://doi.org/10.1016/j.indcrop.2015.05.063

L. Marchante; S. Gómez Alonso; M. E. Alañón; M. S. Pérez-Coello; M. C. Díaz-Maroto, “Natural extracts from fresh and oven-dried winemaking by-products as valuable source of antioxidant compounds,” Food Sci. Nutr., vol. 6, no. 6, pp. 1564–1574, 2018. https://doi.org/10.1002/fsn3.697

M. González; S. Barrios; E. Budelli; N. Pérez; P. Lema; H. Heinzen, “Ultrasound assisted extraction of bioactive compounds in fresh and freeze-dried Vitis vinifera cv Tannat grape pomace,” Food Bioprod. Process., vol. 124, pp. 378–386, 2020. https://doi.org/10.1016/j.fbp.2020.09.012

G. Grillo et al., “Batch and flow ultrasound‐assisted extraction of grape stalks: Process intensification design up to a multi‐kilo scale,” Antioxidants, vol. 9, no. 8, pp. 1–30, Aug. 2020. https://doi.org/10.3390/antiox9080730

J. M. Poveda; L. Loarce; M. Alarcón; M. C. Díaz-Maroto; M. E. Alañón, “Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques,” Ind. Crops Prod., vol. 112, pp. 617–625, Feb. 2018. https://doi.org/10.1016/j.indcrop.2017.12.063

V. Marinelli; L. Padalino; D. Nardiello; M. A. Del Nobile; A. Conte, “New Approach to Enrich Pasta with Polyphenols from Grape Marc,” J. Chem., vol. 2015, Nov. 2015. https://doi.org/10.1155/2015/734578

C. C. Coussios; C. H. Farny; G. Ter Haar; R. A. Roy, “Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU),” Int. J. Hyperth., vol. 23, no. 2, pp. 105–120, Jul. 2009. https://doi.org/10.1080/02656730701194131

M. T. Fernández-Ponce; B. Razi Parjikolaei; H. Nasri Lari; L. Casas; C. Mantell; E. J. Martínez de la Ossa, “Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study,” Chem. Eng. J., vol. 299, pp. 420–430, Sep. 2016. https://doi.org/10.1016/j.cej.2016.04.046

A. Meullemiestre; E. Petitcolas; Z. Maache-Rezzoug; F. Chemat; S. A. Rezzoug, “Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments,” Ultrason. Sonochem., vol. 28, pp. 230–239, Jan. 2016. https://doi.org/10.1016/j.ultsonch.2015.07.022

D. Pingret; A. S. Fabiano-Tixier; C. Le Bourvellec; C. M. G. C. Renard; F. Chemat, “Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace,” J. Food Eng., vol. 111, no. 1, pp. 73–81, Jul. 2012. https://doi.org/10.1016/j.jfoodeng.2012.01.026

L. Alexandru; G. Cravotto; L. Giordana; A. Binello; F. Chemat, “Ultrasound-assisted extraction of clove buds using batch- and flow-reactors : A comparative study on a pilot scale,” Innov. Food Sci. Emerg. Technol., vol. 20, pp. 167–172, Oct. 2013. https://doi.org/10.1016/j.ifset.2013.07.011

Cómo citar
[1]
C. . Ramón y M. A. . Gil-Garzón, «Efecto de los parámetros de operación de la extracción asistida por ultrasonido en la obtención de polifenoles de uva: una revisión», TecnoL., vol. 24, n.º 51, p. e1822, jun. 2021.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-06-18
Sección
Artículos de revisión

Métricas