Method for determining uncertainty and error in the process of ophthalmic lens calibration

Keywords: Optical metrology, Calibration function, Lens power, Focal length, Measurement uncertainty

Abstract

In the present investigation, a scientific procedure was developed, and a mathematical model was proposed, with the objective of determining, under standard conditions, the uncertainty, and the measurement of dioptric power in ophthalmic lenses. The methodology of the scientific procedure is based on the fundamentals of geometric optics, this process guarantees and establishes a standardized uncertainty measure in repeatable and reproducible processes. The methodology is complemented with a proposed mathematical model based on the guide for the expression of uncertainty in measurement - GUM. This model can be applied to lenses used for calibrating eye care equipment (such as lensometers, which are used to diagnose myopia and farsightedness) by evaluating the lenses without having direct contact with patients. When the proposed mathematical model was applied, its experimental result was a maximum expanded uncertainty of ± 0.0079 diopters in a 0.5-diopter lens. This is optimal compared to the result of other authors this article, who reported a maximum expanded uncertainty of ± 0.0086 diopters. In conclusion, the application of this scientific procedure provides manufacturers and users of this type of lenses with a reliable measurement thanks to a calibration process based on geometrical optics and centered on patient safety.

Author Biographies

Alejandro Salgar-Marín , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, alejandrosalgar265466@correo.itm.edu.co

Javier Alberto Vargas , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, javiervargas@itm.edu.co

Andrés Felipe Ramírez-Barrera*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, andresramirez7247@correo.itm.edu.co

References

O. Tobón; V. Rodríguez, “Desarrollo y estandarización de métodos de calibración para equipos utilizados en salud visual (Queratómetros, Lensómetros y Tonómetros), implementados en el Hospital Universitario de San Vicente Fundación”, RIB, vol. 11, no. 22, pp. 21-28, Oct. 2017. https://doi.org/10.24050/19099762.n22.2017.1179

Ministerio De Salud Y Protección Social, “Resolución Número 3100 De 2019”. 2019. http://suin-juriscol.gov.co/viewDocument.asp?ruta=Resolucion/30039964

A. F. Ramirez Barrera; J. F. Martínez Gómez; E. Hidalgo Vásquez, “Modelo de gestión para la aplicación del control metrológico legal y la evaluación de la conformidad en equipos biomédicos”, RIB, vol. 11, no. 21, pp. 73-80, Jun. 2017. https://doi.org/10.24050/19099762.n21.2017.1175

Joint Committee for Guides in Metrology, “JCGM 100: Evaluation of measurement data – Guide to the expression of uncertainty in measurement”, 2008. https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6

M. R. de Paiva; O. Pohlmann-Filho; A. Soratto, “Prospection for metrological control in medical scales and sphygmomanometers in the state of Santa Catarina – Brazil”, J. Phys.: Conf. Ser, vol. 575, no. 1, pp. 24-27. Nov. 2013. https://iopscience.iop.org/article/10.1088/1742-6596/575/1/012047

A. F. Ramírez-Barrera; E. Delgado-Trejos; V. Ramírez-Gómez, “Uncertainty estimation in the sphygmomanometers calibration according to OIML R16-1 from a legal metrology perspective”, IyU, vol. 25, p. 25, Oct. 2021. https://doi.org/10.11144/javeriana.iued25.uesc

A. Badnjević; L. Gurbeta; D. Bošković; Z. Džemić, “Medical devices in legal metrology”, En 4th Mediterr. Conf. Embed. Comput. MECO, Budva, 2015, pp. 365–367. https://doi.org/10.1109/MECO.2015.7181945

J. J. Cárdenas-Monsalve; A. F. Ramírez-Barrera; E. Delgado-Trejos, “Evaluación y aplicación de la incertidumbre de medición en la determinación de las emisiones de fuentes fijas: una revisión”, TecnoLógicas, vol. 21, no. 42, pp. 231–244, May. 2018. https://doi.org/10.22430/22565337.790

J. Zhang; W. Liu; M. Gao; X. Ding, “Metrological calibration of ophthalmometers”, En8th Int. Conf. Biomed. Eng. Informatics, BMEI, Shenyang, 2015, pp. 360–365. https://doi.org/10.1109/BMEI.2015.7401530

N. E. Norrby et al., “Accuracy in determining intraocular lens dioptric power assessed by interlaboratory tests.”, J. Cataract Refract. Surg., vol. 22, no. 7, pp. 983–993, Sep. 1996. https://doi.org/10.1016/s0886-3350(96)80204-5

W. Yang et al., “Research on focal length measurement scheme of self-collimating optical instrument based on double grating”, Sensors, vol. 20, no. 9, May. 2020. https://doi.org/10.3390/s20092718

R. K. Choudhary; S. M. Hazarika; R. S. Sirohi, “Talbot interferometry for focal length measurement using linear and circular gratings”, Springer Proc. Phys., vol. 194, pp. 639–647, Sep. 2017. https://doi.org/10.1007/978-981-10-3908-9_80

J. A. Sousa; A. M. Reynolds; Á. S. Ribeiro, “A comparison in the evaluation of measurement uncertainty in analytical chemistry testing between the use of quality control data and a regression analysis”, Accredit. Qual. Assur., vol. 17, no. 2, pp. 207–214, Jan. 2012. https://doi.org/10.1007/s00769-011-0874-y

Y. Nakano; K. Murata, “Talbot interferometry for measuring the focal length of a lens”, Appl. Opt., vol. 24, no. 19, pp. 3162-3166, Oct. 1985. https://doi.org/10.1364/AO.24.003162

P. Singh; M. S. Faridi; C. Shakher; R. S. Sirohi, “Measurement of focal length with phase-shifting Talbot interferometry”, Appl. Opt., vol. 44, no. 9, pp. 1572–1576, Mar. 2005. https://doi.org/10.1364/AO.44.001572

L. M. Bernardo; O. D. D. Soares, “Evaluation of the focal distance of a lens by Talbot interferometry”, Appl. Opt., vol. 27, no. 2, pp. 296-301, Jan. 1988. https://doi.org/10.1364/AO.27.000296

K. V. Sriram; M. P. Kothiyal; R. S. Sirohi, “Direct determination of focal length by using Talbot interferometry”, Appl. Opt., vol. 31, no. 28, pp. 5984-5987, Oct. 1992. https://doi.org/10.1364/AO.31.005984

G. Yang; L. Miao; X. Zhang; C. Sun; Y. Qiao. “High-accuracy measurement of the focal length and distortion of optical systems based on interferometry”, Appl Opt., vol. 57, no. 18, pp. 5217-5223, Jun. 2018. https://doi.org/10.1364/AO.57.005217

I. Glatt; O. Kafri, “Determination of the focal length of nonparaxial lenses by moire deflectometry”, Appl. Opt., vol. 26, no. 13, pp. 2507-2508, Jul. 1987. https://doi.org/10.1364/AO.26.002507

S. Trivedi; J. Dhanotia; S. Prakash, “Measurement of focal length using phase shifted moiré deflectometry”, Opt. Lasers Eng., vol. 51, no. 6, pp. 776–782, Jun. 2013. https://doi.org/10.1016/j.optlaseng.2013.01.018

E. Keren; K. M. Kreske; O. Kafri, “Universal method for determining the focal length of optical systems by moire deflectometry”, Appl. Opt., vol. 27, no. 8, pp. 1383-1385, Apr. 1988. https://doi.org/10.1364/AO.27.001383

S. De Nicola; P. Ferraro; A. Finizio; G. Pierattini, “Reflective grating interferometer for measuring the focal length of a lens by digital moiré effect”, Opt. Commun., vol. 132, no. 5–6, pp. 432–436, Dec. 1996. https://doi.org/10.1016/0030-4018(96)00391-4

Y. P. Kumar; S. Chatterjee, “Technique for the focal-length measurement of positive lenses using Fizeau interferometry”, Appl. Opt., vol. 48, no. 4, pp. 730–736, Jan. 2009. https://doi.org/10.1364/AO.48.000730

L. Angel; M. Tebaldi; R. Henao, “Phase stepping in Lau interferometry”, Opt. Commun., vol. 164, no. 4-6, pp. 247–255, Jun. 1999. https://doi.org/10.1016/S0030-4018(99)00172-8

M. Thakur; C. Shakher, “Evaluation of the focal distance of lenses by white-light Lau phase interferometry”, Appl. Opt., vol. 41, no. 10, pp. 1841-1845, Apr. 2002. https://doi.org/10.1364/AO.41.001841

M. de Angelis; S. De Nicola; P. Ferraro; A. Finizio; G. Pierattini, “A new approach to high accuracy measurement of the focal lengths of lenses using a digital Fourier transform”, Opt. Commun., vol. 136, no. 5–6, pp. 370–374, Apr. 1997. https://doi.org/10.1016/S0030-4018(96)00730-4

L. Chen; J. Hong; Y. Qiao; X. Zheng; X. Sun, “Theoretical analysis of collimators on the geometrical calibration of wide field-of-view radiometer”, Optik, vol. 121, no. 3, pp. 302–305, Feb. 2010. https://doi.org/10.1016/j.ijleo.2008.02.028

S. De Nicola; P. Ferraro; A. Finizio; G. Pierattini, “Reflective grating interferometer for measuring the focal length of a lens by digital moire effect”, Opt. Commun., vol. 132, no. 5–6, pp. 432–436, 1996. https://doi.org/10.1016/0030-4018(96)00391-4

D. Fantanas; A. Brunton; S. J. Henley; R. A. Dorey, “Investigation of the mechanism for current induced network failure for spray deposited silver nanowires”, Nanotechnology, vol. 29, no. 46, p. 465705. Sep. 2018. https://doi.org/10.1088/1361-6528/aadeda

E. H. K. Stelzer; S. Grill, “The uncertainty principle applied to estimate focal spot dimensions”, Opt. Commun., vol. 132, no. 1–6, pp. 51-56, Jan. 2000. https://doi.org/10.1016/S0030-4018(99)00644-6

M. Dashtdar; S. Ali Hosseini-Saber, “Focal length measurement based on Fresnel diffraction from a phase plate”, Appl. Opt., vol. 55, no. 26, p. 7434-7437, Sep. 2016. https://doi.org/10.1364/AO.55.007434

M. Azpurua; C. Tremola; E. J. Paez, “Comparison of the GUM and Monte Carlo Methods for the Uncertainty Estimation In Electromagnetic Compatibility Testing”, Prog. Electromagn. Res. B, vol. 34, pp. 125-144, 2011. http://www.jpier.org/PIERB/pier.php?paper=11081804

O. Sima; M. C. Lépy, “Application of GUM Supplement 1 to uncertainty of Monte Carlo computed efficiency in gamma-ray spectrometry”, J. apradiso., vol. 109, pp. 493-499, Mar. 2016. https://doi.org/10.1016/j.apradiso.2015.11.097

Centro Español de Metrología, “Procedimiento DI-011 para la calibración de flexómetros”, 2021.

How to Cite
[1]
A. Salgar-Marín, J. A. Vargas, and A. F. Ramírez-Barrera, “Method for determining uncertainty and error in the process of ophthalmic lens calibration”, TecnoL., vol. 24, no. 52, p. e1910, Nov. 2021.

Downloads

Download data is not yet available.
Published
2021-11-30
Section
Research Papers
Crossref Cited-by logo

More on this topic