Flotación por aire disuelto: una revisión desde la perspectiva de los parámetros del sistema y usos en el tratamiento de aguas residuales

Palabras clave: Flotación por aire disuelto, microburbujas, tratamiento de aguas residuales, parámetros de diseño y operación, coagulación-floculación

Resumen

La actual problemática de cambio climático y alta demanda de agua dulce a nivel mundial ha promovido la implementación de tecnologías para la regeneración de las aguas residuales. El objetivo de este estudio es revisar la eficiencia del sistema de flotación por aire disuelto (DAF) en una amplia variedad de aplicaciones en los sectores agrícola, industrial, doméstico y municipal, los cuales presentan un elevado consumo de agua dulce en el mundo. Por tal motivo se realizó una revisión sistemática de la técnica de DAF utilizada para el tratamiento de aguas residuales en el periodo 2015-2021. Se revisaron seis bases de datos indexadas y reportes estadísticos gubernamentales, las palabras claves fueron flotación por aire disuelto, microburbujas, tratamiento de aguas residuales y los principales parámetros de operación y diseño que intervienen en la eficacia del proceso de flotación, junto con un análisis de los estudios de coagulantes sintéticos más comunes utilizados con DAF, así como de los coagulantes naturales que prometen mitigar el cambio climático actual. Por último, se discuten las ventajas, los inconvenientes y los posibles estudios futuros. Se observó que DAF tiene un potencial considerable para el tratamiento de aguas residuales, así como para la utilización de residuos. La generación de grandes cantidades de lodos de DAF es una brecha para la producción de energía limpia, pues permite utilizar estos residuos para la producción de biogás.

 

 

 

Biografía del autor/a

Jeimmy Adriana Muñoz-Alegría*, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán-Colombia, jeimymunoz@unicauca.edu.co

Elena Muñoz-España, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán-Colombia, elenam@unicauca.edu.co

Juan Fernando Flórez-Marulanda, Universidad del Cauca, Colombia

Universidad del Cauca, Popayán-Colombia, jflorez@unicauca.edu.co

Referencias bibliográficas

UNESCO, The United Nations World Water Development Report 2019. Leaving no one behind. UNESCO. Digital Library. 2019. https://unesdoc.unesco.org/ark:/48223/pf0000367304

Agua.org.mx, Agua en el planeta. Fondo Para La Comunicación y La Educación Ambiental, A.C. 2017. https://agua.org.mx/en-el-planeta/

H. Ritchie; M. Roser, Water Use and Stress. Our World in Data. 2017. https://ourworldindata.org/water-use-stress

SWAGL. Water in Agriculture : Towards Sustainable Agriculture. Washington, D.C. : World Bank Group. 2021. https://documents1.worldbank.org/curated/en/875921614166983369/pdf/Water-in-Agriculture-Towards-Sustainable-Agriculture.pdf

A. Aziz; F. Basheer; A. Sengar; Irfanullah, S. U. Khan; I. H. Farooqi, “Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater,” Sci. Total Environ., vol. 686, pp. 681-708, Oct. 2019. https://doi.org/10.1016/j.scitotenv.2019.05.295

A. Mirshafiee; A. Rezaee; R. S. Mamoory, “A clean production process for edible oil removal from wastewater using an electroflotation with horizontal arrangement of mesh electrodes,” J. Clean. Prod., vol. 198, pp. 71-79, Oct. 2018. https://doi.org/10.1016/j.jclepro.2018.06.201

C. J. Nawarkar; V. D. Salkar, “Solar powered Electrocoagulation system for municipal wastewater treatment,” Fuel, vol. 237, pp. 222-226, Feb. 2019. https://doi.org/10.1016/j.fuel.2018.09.140

H. Wu et al., “Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants,” J. Hazard. Mater., vol. 371, pp. 592-602, Jun. 2019. https://doi.org/10.1016/j.jhazmat.2019.03.048

A. Azevedo; R. Etchepare; J. Rubio, “Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump,” Water Sci. Technol., vol. 75, no. 10, pp. 2342-2349, May. 2017. https://doi.org/10.2166/wst.2017.113

A. Azevedo; H. Oliveira; J. Rubio, “Bulk nanobubbles in the mineral and environmental areas: Updating research and applications,” Adv. Colloid Interface Sci., vol. 271, p. 101992, Sep. 2019. https://doi.org/10.1016/j.cis.2019.101992

R. Etchepare; A. Azevedo; S. Calgaroto; J. Rubio, “Removal of ferric hydroxide by flotation with micro and nanobubbles,” Sep. Purif. Technol., vol. 184, pp. 347-353, Aug. 2017. https://doi.org/10.1016/j.seppur.2017.05.014

H. A. Oliveira; A. C. Azevedo; R. Etchepare; J. Rubio, “Separation of emulsified crude oil in saline water by flotation with micro- and nanobubbles generated by a multiphase pump,” Water Sci. Technol., vol. 76, no. 10, pp. 2710-2718, Nov. 2017. https://doi.org/10.2166/wst.2017.441

T. Temesgen; T. T. Bui; M. Han; T. Kim; H. Park, “Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review,” Adv. Colloid Interface Sci., vol. 246, pp. 40-51, Aug. 2017. https://doi.org/10.1016/j.cis.2017.06.011

R. Etchepare; H. Oliveira; A. Azevedo; J. Rubio, “Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles,” Sep. Purif. Technol., vol. 186, pp. 326-332, Oct. 2017. https://doi.org/10.1016/j.seppur.2017.06.007

M. W. Lim; E. V. Lau; P. E. Poh, “Micro-macrobubbles interactions and its application in flotation technology for the recovery of high density oil from contaminated sands,” J. Pet. Sci. Eng., vol. 161, pp. 29-37, Feb. 2018. https://doi.org/10.1016/j.petrol.2017.11.064

K. Ruby; S. K. Majumder, “Studies on stability and properties of micro and nano-particle-laden ionic microbubbles,” Powder Technol., vol. 335, pp. 77-90, Jul. 2018. https://doi.org/10.1016/j.powtec.2018.04.069

M. Zhang; P. Guiraud, “Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system,” Water Res., vol. 126, pp. 399-410, Dec. 2017. https://doi.org/10.1016/j.watres.2017.09.051

S. Calgaroto; A. Azevedo; J. Rubio, “Separation of amine-insoluble species by flotation with nano and microbubbles,” Miner. Eng., vol. 89, pp. 24-29, Apr. 2016. https://doi.org/10.1016/j.mineng.2016.01.006

L. Zhang, “Advanced treatment of oilfield wastewater by a combination of DAF, yeast bioreactor, UASB, and BAF processes,” Sep. Sci. Technol., vol. 56, no. 4, pp. 779-788, Mar. 2021. https://doi.org/10.1080/01496395.2019.1711411

G. H. Johannesson; A. Crolla; J. D. Lauzon; B. H. Gilroyed, “Estimation of biogas co-production potential from liquid dairy manure, dissolved air flotation waste (DAF) and dry poultry manure using biochemical methane potential (BMP) assay,” Biocatal. Agric. Biotechnol., vol. 25, p. 101605, May. 2020. https://doi.org/10.1016/j.bcab.2020.101605

T. Wallace; D. Gibbons; M. O’Dwyer; T. P. Curran, “International evolution of fat, oil and grease (FOG) waste management - A review,” J. Environ. Manage., vol. 187, pp. 424-435, Feb. 2017. https://doi.org/10.1016/j.jenvman.2016.11.003

Q. Zhang; S. Liu; C. Yang; F. Chen; S. Lu, “Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment,” Sep. Purif. Technol., vol. 138, pp. 186-190, Dec. 2014. https://doi.org/10.1016/j.seppur.2014.10.024

T. Azuma et al., “Removal of pharmaceuticals in water by introduction of ozonated microbubbles,” Sep. Purif. Technol., vol. 212, pp. 483-489, Apr. 2019. https://doi.org/10.1016/j.seppur.2018.11.059

Y. Sun; S. Wang; J. Niu, “Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology,” Bioresour. Technol., vol. 258, pp. 187-194, Jun. 2018. https://doi.org/10.1016/j.biortech.2018.03.008

H. Al-Zoubi; K. A. Ibrahim; K. A. Abu-Sbeih, “Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process,” J. Water Process Eng., vol. 8, pp. 19-27, Dec. 2015. https://doi.org/10.1016/j.jwpe.2015.08.002

Y. Wang et al., “Interactions between flocs and bubbles in the separation zone of dissolved air flotation system,” Sci. Total Environ., vol. 761, p. 143222, Mar. 2021. https://doi.org/10.1016/j.scitotenv.2020.143222

Y. Wang et al., “A study on the feasibility and mechanism of enhanced co-coagulation dissolved air flotation with chitosan-modified microbubbles,” J. Water Process Eng., vol. 40, p. 101847, Apr. 2021. https://doi.org/10.1016/j.jwpe.2020.101847

K. Satpathy; U. Rehman; B. Cools; L. Verdickt; G. Peleman; I. Nopens, “CFD-based process optimization of a dissolved air flotation system for drinking water production,” Water Sci. Technol., vol. 81, no. 8, pp. 1668-1681, Apr. 2020. https://doi.org/10.2166/wst.2020.028

M. M. Amin; M. M. Golbini Mofrad; H. Pourzamani; S. M. Sebaradar; K. Ebrahim, “Treatment of industrial wastewater contaminated with recalcitrant metal working fluids by the photo-Fenton process as post-treatment for DAF,” J. Ind. Eng. Chem., vol. 45, pp. 412-420, Jan. 2017. https://doi.org/10.1016/j.jiec.2016.10.010

C. Cagnetta et al., “High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery,” Bioresour. Technol., vol. 291, p. 121833, Nov. 2019. https://doi.org/10.1016/j.biortech.2019.121833

E. Villar-Navarro; R. M. Baena-Nogueras; M. Paniw; J. A. Perales; P. A. Lara-Martín, “Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes,” Water Res., vol. 139, pp. 19-29, Aug. 2018. https://doi.org/10.1016/j.watres.2018.03.072

R. R. Fonseca; J. P. Thompson Jr.; I. C. Franco; F. V. da Silva, “Automation and Control of a Dissolved Air Flotation Pilot Plant,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3911-3916, Jul. 2017.https://doi.org/10.1016/j.ifacol.2017.08.364

Y. Matsui; K. Fukushi; N. Tambo, “Modeling, simulation and operational parameters of dissolved air flotation,” J. Water Supply Res. Technol., vol. 47, no. 1, pp. 9-20, Feb. 1998. https://doi.org/10.2166/aqua.1998.0003

Z. Tian; C. Wang; M. Ji, “Full-scale dissolved air flotation (DAF) equipment for emergency treatment of eutrophic water,” Water Sci. Technol., vol. 77, no. 7, pp. 1802-1809, Apr. 2018. https://doi.org/10.2166/wst.2018.046

J. P. Bogacki; P. Marcinowski; J. Naumczyk; P. Wiliński, “Cosmetic wastewater treatment using dissolved air flotation,” Arch. Environ. Prot., vol. 43, no. 2, pp. 65-73, Jun. 2017.https://doi.org/10.1515/aep-2017-0018

S. Ahmadi; F. Mostafapour, “Survey of Efficiency of Dissolved Air Flotation in Removal Penicillin G Potassium from Aqueous Solutions,” Br. J. Pharm. Res., vol. 15, no. 3, pp. 1-11, Jan. 2017. https://doi.org/10.9734/BJPR/2017/31180

J. E. Forero; J. Diaz; V. R. Blandón, “Diseño de un nuevo sistema de flotación para el tratamiento de aguas industriales”. C.T.F Cienc. Tecnol. Futuro, vol. 1, no. 5, pp. 67-75, Dic. 1999. http://www.scielo.org.co/pdf/ctyf/v1n5/v1n5a06.pdf

J. E. Forero; O. P. Ortiz; J. J. Duque, “Design and application of flotation systems for the treatment of reinjected water in a colombian petroleum field”, C.T.F Cienc. Tecnol. Futuro, vol. 3, no. 3, pp. 147-158, Jan. 2007. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100010&nrm=iso

M.-S. Maeng; H.-S. Kim; K.-S. Lee; S. Dockko, “Effect of DAF configuration on the removal of phosphorus and organic matter by a pilot plant treating combined sewer overflows,” Int. Biodeterior. Biodegradation, vol. 124, pp. 17-25, Oct. 2017. https://doi.org/10.1016/j.ibiod.2017.07.017

F. A. Soares et al., “Dissolved air flotation as potential new mechanism for intestinal parasite diagnosis in feces,” Acta Trop., vol. 224, p. 106137, Dec. 2021. https://doi.org/10.1016/j.actatropica.2021.106137

K. Petersen; S. Vakkalanka; L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf. Softw. Technol., vol. 64, pp. 1-18, Aug. 2015. https://doi.org/10.1016/j.infsof.2015.03.007

A. Rahman; R. Mahdavi-Hezaveh; L. Williams, “A systematic mapping study of infrastructure as code research,” Inf. Softw. Technol., vol. 108, pp. 65-77, Apr. 2019. https://doi.org/10.1016/j.infsof.2018.12.004

J. K. Edzwald, “Dissolved air flotation and me,” Water Res., vol. 44, no. 7, pp. 2077-2106, Apr. 2010. https://doi.org/10.1016/j.watres.2009.12.040

M. Ansari; H. H. Bokhari; D. E. Turney, “Energy efficiency and performance of bubble generating systems,” Chem. Eng. Process. - Process Intensif., vol. 125, pp. 44-55, Mar. 2018. https://doi.org/10.1016/j.cep.2017.12.019

A. Azevedo; H. A. Oliveira; J. Rubio, “Treatment and water reuse of lead-zinc sulphide ore mill wastewaters by high rate dissolved air flotation,” Miner. Eng., vol. 127, pp. 114-121, Oct. 2018. https://doi.org/10.1016/j.mineng.2018.07.011

H. B. Ortiz-Oliveros; R. M. Flores-Espinosa, “Design of a mobile dissolved air flotation system with high rate for the treatment of liquid radioactive waste,” Process Saf. Environ. Prot., vol. 144, pp. 23-31, Dec. 2020. https://doi.org/10.1016/j.psep.2020.07.016

O. V. Okoro; Z. Sun; J. Birch, “Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: A predictive analysis of the biodiesel product properties,” J. Clean. Prod., vol. 168, pp. 1436-1447, Dec. 2017. https://doi.org/10.1016/j.jclepro.2017.09.128

V. R. Fanaie; M. Khiadani; T. Ayres, “Effects of internal geometry on hydrodynamics of dissolved air flotation (DAF) tank: An experimental study using particle image velocimetry (PIV),” Colloids Surfaces A Physicochem. Eng. Asp., vol. 575, pp. 382-390, Aug. 2019. https://doi.org/10.1016/j.colsurfa.2019.05.027

R. Prakash; S. K. Majumder; A. Singh, “Flotation technique: Its mechanisms and design parameters,” Chem. Eng. Process. - Process Intensif., vol. 127, pp. 249-270, May 2018.

https://doi.org/10.1016/j.cep.2018.03.029

V. R. Fanaie; M. Khiadani, “Effect of salinity on air dissolution, size distribution of microbubbles, and hydrodynamics of a dissolved air flotation (DAF) system,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 591, p. 124547, Apr. 2020. https://doi.org/10.1016/j.colsurfa.2020.124547

M. de Langlard; H. Al-Saddik; S. Charton; J. Debayle; F. Lamadie, “An efficiency improved recognition algorithm for highly overlapping ellipses: Application to dense bubbly flows,” Pattern Recognit. Lett., vol. 101, pp. 88-95, Jan. 2018.https://doi.org/10.1016/j.patrec.2017.11.024

A. Gordiychuk; M. Svanera, S. Benini; P. Poesio, “Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator,” Exp. Therm. Fluid Sci., vol. 70, pp. 51-60, Jan. 2016. https://doi.org/10.1016/j.expthermflusci.2015.08.014

R. Prakash; S. Kumar Majumder; A. Singh, “Bubble size distribution and specific bubble interfacial area in two-phase microstructured dense bubbling bed,” Chem. Eng. Res. Des., vol. 156, pp. 108-130, Apr. 2020. https://doi.org/10.1016/j.cherd.2020.01.032

S. J. Gulden; C. Riedele; S. Rollié; M.-H. Kopf; H. Nirschl, “Online bubble size analysis in micro flotation,” Chem. Eng. Sci., vol. 185, pp. 168-181, Aug. 2018. https://doi.org/10.1016/j.ces.2018.04.009

L. Vinnett; J. Sovechles; C. O. Gomez; K. E. Waters, “An image analysis approach to determine average bubble sizes using one-dimensional Fourier analysis,” Miner. Eng., vol. 126, pp. 160-166, Sep. 2018. https://doi.org/10.1016/j.mineng.2018.06.030

B. Swart et al., “In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography,” Chem. Eng. Sci., vol. 225, p. 115836, Nov. 2020. https://doi.org/10.1016/j.ces.2020.115836

M. dos S. Pereira; A. C. Borges; F. F. Heleno; L. F. A. Squillace; L. R. D. Faroni, “Treatment of synthetic milk industry wastewater using batch dissolved air flotation,” J. Clean. Prod., vol. 189, pp. 729-737, Jul. 2018. https://doi.org/10.1016/j.jclepro.2018.04.065

L. de S. Leite; M. T. Hoffmann; L. A. Daniel, “Coagulation and dissolved air flotation as a harvesting method for microalgae cultivated in wastewater,” J. Water Process Eng., vol. 32, p. 100947, Dec. 2019. https://doi.org/10.1016/j.jwpe.2019.100947

A. Castillo; P. Vall; M. Garrido-Baserba; J. Comas; M. Poch, “Selection of industrial (food, drink and milk sector) wastewater treatment technologies: A multi-criteria assessment,” J. Clean. Prod., vol. 143, pp. 180-190, Feb. 2017.https://doi.org/10.1016/j.jclepro.2016.12.132

B. R. Baker; R. Mohamed; A. Al-Gheethi; H. A. Aziz, “Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review,” J. Dispers. Sci. Technol., vol. 42, no. 6, pp. 880-899, May. 2021. https://doi.org/10.1080/01932691.2020.1721007

V. Del Nery; M. H. Z. Damianovic; R. B. Moura; E. Pozzi; E. C. Pires; E. Foresti, “Poultry slaughterhouse wastewater treatment plant for high quality effluent,” Water Sci. Technol., vol. 73, no. 2, pp. 309-316, Jan. 2016. https://doi.org/10.2166/wst.2015.494

M. do S. Pereira; A. C. Borges; G. L. Muniz; F. F. Heleno; L. R. D. Faroni, “Dissolved air flotation optimization for treatment of dairy effluents with organic coagulants,” J. Water Process Eng., vol. 36, p. 101270, Aug. 2020. https://doi.org/10.1016/j.jwpe.2020.101270

G. L. Muniz; A. C. Borges; T. C. F. da Silva, “Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation,” J. Water Process Eng., vol. 37, p. 101453, Oct. 2020. https://doi.org/10.1016/j.jwpe.2020.101453

S. Ansari; J. Alavi; Z. M. Yaseen, “Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater,” Environ. Sci. Pollut. Res., vol. 25, no. 34, pp. 33978-33991, Dec. 2018. https://doi.org/10.1007/s11356-018-3340-0

M. M. G. Mofrad; H. Pourzamani; M. M. Amin; I. Parseh; M. Alipour, “In situ treatment of metalworking wastewater by chemical addition-dissolved air flotation coupled with UV, H2O2 & ZnO,” Heliyon, vol. 6, no. 1, p. e03091, Jan. 2020. https://doi.org/10.1016/j.heliyon.2019.e03091

Y. Shutova; B. L. Karna, A. C. Hambly, B. Lau, R. K. Henderson; P. Le-Clech, “Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation,” Desalination, vol. 383, pp. 12-21, Apr. 2016. https://doi.org/10.1016/j.desal.2015.12.018

M. R. Aliff Radzuan; M. A. Abia-Biteo Belope; R. B. Thorpe, “Removal of fine oil droplets from oil-in-water mixtures by dissolved air flotation,” Chem. Eng. Res. Des., vol. 115, pp. 19-33, Nov. 2016. https://doi.org/10.1016/j.cherd.2016.09.013

M. Karhu; T. Leiviskä; J. Tanskanen, “Enhanced DAF in breaking up oil-in-water emulsions,” Sep. Purif. Technol., vol. 122, pp. 231-241, Feb. 2014.https://doi.org/10.1016/j.seppur.2013.11.007

F. C. P. Rocha e Silva et al., “Oil removal efficiency forecast of a Dissolved Air Flotation (DAF) reduced scale prototype using the dimensionless number of Damköhler,” J. Water Process Eng., vol. 23, pp. 45-49, Jun. 2018. https://doi.org/10.1016/j.jwpe.2018.01.019

C. Rattanapan; A. Sawain; T. Suksaroj; C. Suksaroj, “Enhanced efficiency of dissolved air flotation for biodiesel wastewater treatment by acidification and coagulation processes,” Desalination, vol. 280, no. 1-3, pp. 370-377, Oct. 2011. https://doi.org/10.1016/j.desal.2011.07.018

J. Lee et al., “Refractory oil wastewater treatment by dissolved air flotation, electrochemical advanced oxidation process, and magnetic biochar integrated system,” J. Water Process Eng., vol. 36, p. 101358, Aug. 2020. https://doi.org/10.1016/j.jwpe.2020.101358

R. T. Rodrigues; J. Rubio, “DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry,” Int. J. Miner. Process., vol. 82, no. 1, pp. 1-13, Feb. 2007. https://doi.org/10.1016/j.minpro.2006.07.019

J. Amaral Filho; A. Azevedo; R. Etchepare; J. Rubio, “Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation,” Int. J. Miner. Process., vol. 149, pp. 1-8, Apr. 2016. https://doi.org/10.1016/j.minpro.2016.01.012

J. Xue; H. Zhong; S. Wang, “Removal of sodium oleate from synthetic manganese leaching solution by coagulation-dissolved air flotation,” J. Environ. Manage., vol. 247, pp. 1-8, Oct. 2019.https://doi.org/10.1016/j.jenvman.2019.06.026

X. Zhang; X. Zhang; Y. Liu; Q. Zhang; S. Yang; X. He, “Removal of viscous and clogging suspended solids in the wastewater from acrylonitrile-butadiene-styrene resin production by a new dissolved air release device,” Process Saf. Environ. Prot., vol. 148, pp. 524-535, Apr. 2021. https://doi.org/10.1016/j.psep.2020.10.031

H. A. Oliveira; A. Azevedo; J. Rubio, “Removal of flocculated TiO 2 nanoparticles by settling or dissolved air flotation,” Environ. Technol., vol. 42, no. 7, pp. 1001-1012, Mar. 2021.https://doi.org/10.1080/09593330.2019.1650123

H. B. Ortiz-Oliveros; R. M. Flores-Espinosa, “Simultaneous removal of oil, total Co and 60Co from radioactive liquid waste by dissolved air flotation,” Int. J. Environ. Sci. Technol., vol. 16, no. 7, pp. 3679-3686, Jul. 2019. https://doi.org/10.1007/s13762-018-1984-4

S. Watanabe et al., “STRAD project for systematic treatments of radioactive liquid wastes generated in nuclear facilities,” Prog. Nucl. Energy, vol. 117, p. 103090, Nov. 2019. https://doi.org/10.1016/j.pnucene.2019.103090

N. R. Hanumanth Rao et al., “The role of algal organic matter in the separation of algae and cyanobacteria using the novel ‘Posi’ - Dissolved air flotation process,” Water Res., vol. 130, pp. 20-30, Mar. 2018. https://doi.org/10.1016/j.watres.2017.11.049

A. H. Alshahri; L. Fortunato; N. Zaouri; N. Ghaffour; T. Leiknes, “Role of dissolved air flotation (DAF) and liquid ferrate on mitigation of algal organic matter (AOM) during algal bloom events in RO desalination,” Sep. Purif. Technol., vol. 256, p. 117795, Feb. 2021. https://doi.org/10.1016/j.seppur.2020.117795

H.-B. Ding; M. Doyle; A. Erdogan; R. Wikramanayake; P. Gallagher, “Innovative use of dissolved air flotation with biosorption as primary treatment to approach energy neutrality in WWTPs,” Water Pract. Technol., vol. 10, no. 1, pp. 133-142, Mar. 2015. https://doi.org/10.2166/wpt.2015.015

G. L. de Oliveira; L. A. Daniel, “Removal of Giardia spp. cysts and Cryptosporididum spp. oocysts from anaerobic effluent by dissolved air flotation,” Environ. Technol., vol. 42, no. 1, pp. 141-147, Jan. 2021. https://doi.org/10.1080/09593330.2019.1625447

O. Sanchez et al., “Recovery of particulate matter from a high-rate moving bed biofilm reactor by high-rate dissolved air flotation,” Water Qual. Res. J., vol. 53, no. 4, pp. 181-190, Nov. 2018 https://doi.org/10.2166/wqrj.2018.003

S. Choi; J. Shin; K.-J. Chae; Y. M. Kim, “Mitigation via physiochemically enhanced primary treatment of antibiotic resistance genes in influent from a municipal wastewater treatment plant,” Sep. Purif. Technol., vol. 247, p. 116946, Sep. 2020. https://doi.org/10.1016/j.seppur.2020.116946

T. Zheng et al., “Separation of Pollutants from Oil-Containing Restaurant Wastewater by Novel Microbubble Air Flotation and Traditional Dissolved Air Flotation,” Sep. Sci. Technol., p. 150707113117003, Jul. 2015. https://doi.org/10.1080/01496395.2015.1062396

F. C. Andreoli; L. P. Sabogal-Paz, “Coagulation, flocculation, dissolved air flotation and filtration in the removal of Giardia spp. and Cryptosporidium spp. from water supply,” Environ. Technol., vol. 40, no. 5, pp. 654-663, Feb. 2019. http://dx.doi.org/10.1080/09593330.2017.1400113

D. Kotoula et al., “Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results,” J. Clean. Prod., vol. 271, p. 122704, Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122704

I. A. Crossley; M. T. Valade, “A review of the technological developments of dissolved air flotation,” J. Water Supply Res. Technol., vol. 55, no. 7-8, pp. 479-491, Nov. 2006. https://doi.org/10.2166/aqua.2006.057

M. Lichti; H.-J. Bart, “Bubble size distributions with a shadowgraphic optical probe,” Flow Meas. Instrum., vol. 60, pp. 164-170, Apr. 2018. https://doi.org/10.1016/j.flowmeasinst.2018.02.020

W. E. Juwana; A. Widyatama; O. Dinaryanto; W. Budhijanto; Indarto, and Deendarlianto, “Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator,” Chem. Eng. Res. Des., vol. 141, pp. 436-448, Jan. 2019. https://doi.org/10.1016/j.cherd.2018.11.017

X. Wang et al., “Bubble breakup in a swirl-venturi microbubble generator,” Chem. Eng. J., vol. 403, p. 126397, Jan. 2021.https://doi.org/10.1016/j.cej.2020.126397

R. Mazahernasab; R. Ahmadi, “Determination of bubble size distribution in a laboratory mechanical flotation cell by a laser diffraction technique,” Physicochem. Probl. Miner. Process, vol. 52, no. 2, pp. 690-702, Jul. 2014. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100010&nrm=iso

N. Suwartha; D. Syamzida; C. R. Priadi; S. S. Moersidik; F. Ali, “Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes,” Heliyon, vol. 6, no. 4, p. e03748, Apr. 2020. https://doi.org/10.1016/j.heliyon.2020.e03748

X. Tao; Y. Liu; H. Jiang; R. Chen, “Microbubble generation with shear flow on large-area membrane for fine particle flotation,” Chem. Eng. Process. - Process Intensif., vol. 145, p. 107671, Nov. 2019. https://doi.org/10.1016/j.cep.2019.107671

A. Kouhestani; A. Amani Tehrani; H. Parsaeian; M. H. Nikfa; A. Bazargan; H. Masoumi Isfahani, “Study of 3D-Printed Pressure Release Nozzle for Microbubble Formation in Full-Scale Dissolved Air Flotation (DAF),” Chem. Eng. Process. - Process Intensif., vol. 155, p. 108070, Sep. 2020. https://doi.org/10.1016/j.cep.2020.108070

W. Chung; S. Young, “Evaluation of a chemical dissolved air flotation system for the treatment of restaurant dishwasher effluent,” Can. J. Civ. Eng., vol. 40, no. 12, pp. 1164-1172, Dec. 2013. https://doi.org/10.1139/cjce-2012-0357

A. Chen; Z. Wang; J. Yang, “Influence of bubble size on the fluid dynamic behavior of a DAF tank: A 3D numerical investigation,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 495, pp. 200-207, Apr. 2016. https://doi.org/10.1016/j.colsurfa.2015.10.039

T. Kim; H. Park; M. Han, “Design parameter estimations for adjustable bubble size in bubble generating system,” Water Sci. Technol., vol. 77, no. 1, pp. 1-6, Jan. 2018. https://doi.org/10.2166/wst.2017.470

J. P. Rodrigues; R. Béttega, “Evaluation of multiphase CFD models for Dissolved Air Flotation (DAF) process,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 539, pp. 116-123, Feb. 2018. https://doi.org/10.1016/j.colsurfa.2017.12.015

J. Huang et al., “An investigation on the performance of a micro-scale Venturi bubble generator,” Chem. Eng. J., vol. 386, p. 120980, Apr. 2020. . https://doi.org/10.1016/j.cej.2019.02.068

Z. Pourkarimi; B. Rezai; M. Noaparast, “Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications,” Physicochem. Probl. Miner. Process, vol. 53, no. 2, pp. 920-942. Aug. 2016. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100010&nrm=iso

Y. Rybachuk; A. Jodłowski, “Mathematical model of dissolved air flotation (DAF) based on impulse conservation law,” SN Appl. Sci., vol. 1, no. 6, p. 541, Jun. 2019. https://doi.org/10.1007/s42452-019-0560-y

B. Lakghomi; Y. Lawryshyn; R. Hofmann, “A model of particle removal in a dissolved air flotation tank: Importance of stratified flow and bubble size,” Water Res., vol. 68, pp. 262-272, Jan. 2015. https://doi.org/10.1016/j.watres.2014.09.053

J. Yanza-López; R. Rivera-Hernández; L. Gómez-Torres; C. Zafra-Mejía, “Evaluación de FeCl3 y PAC para la potabilización de agua con alto contenido de color y baja turbiedad,” TecnoLógicas, vol. 22, no. 45, pp. 9-21, May 2019. https://doi.org/10.22430/22565337.1085

K. Xu; Y. Li; X. Zou; H. Wen; Z. Shen; X. Ren, “Investigating microalgae cell-microsphere interactions during microalgae harvesting by ballasted dissolved air flotation through XDLVO theory,” Biochem. Eng. J., vol. 137, pp. 294-304, Sep. 2018. https://doi.org/10.1016/j.bej.2018.06.013

J. Fernández; S. Montenegro; C. Ledezma; J. Yanza, “Sedimentabilidad de partículas floculentas en aguas con alto contenido de color y baja turbiedad, coaguladas con FeCl3 + PAC versus PAC,” TecnoLógicas, vol. 24, no. 51, p. e1789, Feb. 2021. https://doi.org/10.22430/22565337.1789

R. Miranda; I. Latour; A. Blanco, “Understanding the Efficiency of Aluminum Coagulants Used in Dissolved Air Flotation (DAF),” Front. Chem., vol. 8, Feb. 2020. https://doi.org/10.3389/fchem.2020.00027

F. Ghasemi Naghdi; P. M. Schenk, “Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells,” Bioresour. Technol., vol. 218, pp. 428-435, Oct. 2016. https://doi.org/10.1016/j.biortech.2016.06.093

H. S. Oh, S. H. Kang, S. Nam, E.-J. Kim; T.-M. Hwang, “CFD modelling of cyclonic-DAF (dissolved air flotation) reactor for algae removal,” Eng. Sci. Technol. an Int. J., vol. 22, no. 2, pp. 477-481, Apr. 2019. https://doi.org/10.1016/j.jestch.2018.12.003

K. H. Lee; H. Kim, J. W. KuK, J. D. Chung, S. Park; E. E. Kwon, “Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique,” Environ. Pollut., vol. 256, p. 112050, Jan. 2020. https://doi.org/10.1016/j.envpol.2019.01.011

J. P. Rodrigues; J. N. M. Batista; R. Béttega, “Application of population balance equations and interaction models in CFD simulation of the bubble distribution in dissolved air flotation,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 577, pp. 723-732, Sep. 2019. https://doi.org/10.1016/j.colsurfa.2019.06.032

Y. Wang; W. Liu; L. Tian; R. Jia; Z. Du; A. Zhou, “Research on the CFD numerical simulation and process optimization of countercurrent-cocurrent dissolved air flotation,” J. Water Supply Res. Technol., vol. 68, no. 5, pp. 325-336, Aug. 2019. https://doi.org/10.2166/aqua.2019.147

A. Atamaleki et al., “Effect of coagulation and sonication on the dissolved air flotation (DAF) process for thickening of biological sludge in wastewater treatment,” Environ. Heal. Eng. Manag., vol. 7, no. 1, pp. 59-65, Feb. 2020. https://doi.org/10.34172/EHEM.2020.08

R. R. Fonseca; I. C. Franco, J. P. Thompson; F. V. da Silva, “Turbidity control on dissolved air flotation process using fuzzy logic,” Water Sci. Technol., vol. 78, no. 12, pp. 2586-2596, Dec. 2018. https://doi.org/10.2166/wst.2019.015

X. Zhang; L. Wang; M. Sommerfeld; Q. Hu, “Harvesting microalgal biomass using magnesium coagulation-dissolved air flotation,” Biomass and Bioenergy, vol. 93, pp. 43-49, Oct. 2016. https://doi.org/10.1016/j.biombioe.2016.06.024

M. A. S. Alkarawi,G. S. Caldwell; J. G. M. Lee, “Continuous harvesting of microalgae biomass using foam flotation,” Algal Res., vol. 36, pp. 125-138, Dec. 2018. https://doi.org/10.1016/j.algal.2018.10.018

Cómo citar
[1]
J. A. Muñoz-Alegría, E. . Muñoz-España, y J. F. Flórez-Marulanda, «Flotación por aire disuelto: una revisión desde la perspectiva de los parámetros del sistema y usos en el tratamiento de aguas residuales», TecnoL., vol. 24, n.º 52, p. e2111, dic. 2021.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2021-12-16
Sección
Artículos de revisión

Métricas