Alteration of Entropy in the Precuneus and Posterior Cingulate Cortex in Alzheimer’s Disease: A Resting-State Functional Magnetic Resonance Study

Keywords: Functional magnetic resonance imaging, Alzheimer’s disease, Permutation entropy, Medical image processing, Default mode network, Executive network

Abstract

The human brain has been described as a complex system. Its study using neurophysiological signals has revealed the presence of linear and non-linear interactions. In this context, entropy metrics have been used to discover brain behavior in the presence and absence of neurological alterations. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s Disease (AD). The objective of this study was to characterize the dynamics of brain oscillations in AD using entropy and the Amplitude of Low-Frequency Fluctuations (ALFF) of BOLD signals from the default network and the executive control network in patients with AD and healthy individuals. For this purpose, the data was extracted from the Open Access Series of Imaging Studies (OASIS). The results revealed greater discriminatory power in Permutation Entropy (PE) than in ALFF and fractional ALFF metrics. An increase in PE was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus exhibited a differential characteristic when PE was evaluated in both groups. There were no findings when the metrics were correlated with clinical scales. The results showed that PE can be used to characterize the brain function in patients with AD and reveals information about non-linear interactions complementary to the characteristics obtained by calculating the ALFF.

Author Biographies

Aura C. Puche*, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín-Colombia, aura.puche@udea.edu.co

John Fredy Ochoa-Gómez, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín-Colombia, john.ochoa@udea.edu.co

Yésika Alexandra Agudelo-Londoño, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín-Colombia, yesika.agudelo@udea.edu.co

Jan Karlo Rodas-Marín, Institución Prestadora de Servicios de Salud “IPS Universitaria”, Colombia

Institución Prestadora de Servicios de Salud “IPS Universitaria”, Medellín-Colombia, jan.rodas@udea.edu.co

Carlos Andrés Tobón-Quintero, Institución Prestadora de Servicios de Salud “IPS Universitaria”, Colombia

Institución Prestadora de Servicios de Salud “IPS Universitaria”, Medellín-Colombia, carlos.tobonq@udea.edu.co

References

World Health Organization, “The Global Dementia Observatory Reference Guide World Health Organization,” Geneva, Switzerland. 2018. https://apps.who.int/iris/bitstream/handle/10665/272669/WHO-MSD-MER-18.1-eng.pdf

Y. Takeuchi; Y. Ariza-Araujo; S. Prada, “P3-349: Prevalence estimates of dementia in colombia (2005-2020): transitions and stage of disease,” Alzheimer’s Dement., vol. 10, no. 4S, pp. 758–758, Jul. 2014. https://doi.org/10.1016/j.jalz.2014.05.1442

S. I. Prada; Y. Takeuchi; Y. Ariza, “Costo monetario del tratamiento de la enfermedad deAlzheimer en Colombia”, Acta Neurol Colomb., vol. 30, no. 4, Oct. 2014. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-87482014000400004

M. A. Busche; B. T. Hyman, “Synergy between amyloid-β and tau in Alzheimer’s disease,” Nature Neuroscience, vol. 23, no. 10, pp. 1183–1193, Oct.2020. https://doi.org/10.1038/s41593-020-0687-6

L. Vermunt et al., “Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype,” Alzheimer’s Dement., vol. 15, no. 7, pp. 888–898, Jun. 2019. https://doi.org/10.1016/j.jalz.2019.04.001

B. C. Dickerson; F. Agosta; M. Filippi, “fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications,” in fMRI techniques and protocols, Humana Press, New York, NY, 2016, pp. 699–739. https://doi.org/10.1007/978-1-4939-5611-1_23

F. Agosta; M. Pievani; C. Geroldi; M. Copetti; G. B. Frisoni; M. Filippi, “Resting state fMRI in Alzheimer’s disease: beyond the default mode network,” Neurobiol. Aging, vol. 33, no. 8, pp. 1564–1578, Aug. 2012. https://doi.org/10.1016/j.neurobiolaging.2011.06.007

A. P. Badhwar; A. Tam; C. Dansereau; P. Orban; F. Hoffstaedter; P. Bellec, “Resting-state network dysfunction in Alzheimer’s disease: A systematic review and meta-analysis,” Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit., vol. 8, no. 1, pp. 73-85, Apr. 2017. https://doi.org/10.1016/j.dadm.2017.03.007

M. Weiler et al., “Default mode, executive function, and language functional connectivity networks are compromised in mild Alzheimer’s disease,” Curr. Alzheimer Res., vol. 11, no. 3, pp. 274–282, Mar. 2014. https://doi.org/10.2174/1567205011666140131114716

Q. Zhao; H. Lu; H. Metmer; W. X. Y. Li; J. Lu, “Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer’s disease,” Brain Res., vol. 1678, pp. 262–272, Jan. 2018. https://doi.org/10.1016/j.brainres.2017.10.025

E. L. Dennis; P. M. Thompson, “Functional Brain Connectivity Using fMRI in Aging and Alzheimer’s Disease,” Neuropsychol. Rev., vol. 24, no. 1, pp. 49–62, Mar. 2014. https://doi.org/10.1007/s11065-014-9249-6

H. Lv et al., “Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know,” Am. J. Neuroradiol., vol 39. no. 8, pp. 1390-1399, Aug. 2018. https://doi.org/10.3174/ajnr.A5527

L. Yang et al., “Gradual Disturbances of the Amplitude of Low-Frequency Fluctuations (ALFF) and Fractional ALFF in Alzheimer Spectrum,” Front. Neurosci., vol. 12, Dec. 2018. https://doi.org/10.3389/fnins.2018.00975

R. A. Poldrack, “The role of fMRI in Cognitive Neuroscience: where do we stand?,” Curr. Opin. Neurobio., vol. 18, no. 2, pp. 223–227, Apr. 2008. https://doi.org/10.1016/j.conb.2008.07.006

N. M. Timme; C. Lapish, “A Tutorial for Information Theory in Neuroscience,” eNeuro, vol. 5, no. 3, May 2018. https://doi.org/10.1523/ENEURO.0052-18.2018

S. Moguilner et al., “Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study,” Neuroimage, vol. 225, p. 117522, Jan. 2021. https://doi.org/10.1016/j.neuroimage.2020.117522

A. C. Yang; S.-J. Tsai; C.-P. Lin; C.-K. Peng, “A Strategy to Reduce Bias of Entropy Estimates in Resting-State fMRI Signals,” Front. Neurosci., vol. 12, p. 398, Jun. 2018. https://doi.org/10.3389/fnins.2018.00398

C. Bandt; B. Pompe, “Permutation Entropy: A Natural Complexity Measure for Time Series,” Phys. Rev. Lett., vol. 88, no. 17, Dec. 2001. http://stubber.math-inf.uni-greifswald.de/pub/full/prep/2001/11.pdf

B. Wang et al., “Decreased Complexity in Alzheimer’s Disease: Resting-State fMRI Evidence of Brain Entropy Mapping,” Front. Aging Neurosci., vol. 9, Nov. 2017. https://doi.org/10.3389/fnagi.2017.00378

J. Sun et al., “Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer’s disease: A review,” Entropy, vol. 22, no. 2, Feb. 2020. https://doi.org/10.3390/e22020239

P. J. LaMontagne et al., “OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease,” medRxiv, pp. 2-37, Dec. 2019. https://doi.org/10.1101/2019.12.13.19014902

S. E. O’Bryant et al., “Staging dementia using clinical dementia rating scale sum of boxes scores: A Texas Alzheimer’s research consortium study,” Arch. Neurol., vol. 65, no. 8, pp. 1091–1095, Aug. 2008. https://doi.org/10.1001/archneur.65.8.1091

OASIS, “OASIS-3: Imaging Methods & Data Dictionary,” Apr. 2018. https://www.oasis-brains.org/files/OASIS-3_Imaging_Data_Dictionary_v1.8.pdf

S. Whitfield-Gabrieli; A. Nieto-Castanon, “Conn : A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks,” Brain Connect., vol. 2, no. 3, pp. 125–141, Jun. 2012. https://doi.org/10.1089/brain.2012.0073

W. R. Shirer; S. Ryali; E. Rykhlevskaia; V. Menon; M. D. Greicius, “Decoding Subject-Driven Cognitive States with Whole-Brain Connectivity Patterns,” Cereb. Cortex, vol. 22, no. 1, pp. 158–165, May. 2011. https://doi.org/10.1093/cercor/bhr099

C.-G. Yan; X.-D. Wang; X.-N. Zuo; Y.-F. Zang, “DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging,” Neuroinform., vol. 14, no. 3, pp. 339–351, Jul. 2016. https://doi.org/10.1007/s12021-016-9299-4

X.-N. Zuo et al., “The oscillating brain: complex and reliable.,” Neuroimage, vol. 49, no. 2, pp. 1432–1445, Jan. 2010. https://doi.org/10.1016/j.neuroimage.2009.09.037

M. Riedl; A. Müller; N. Wessel, “Practical considerations of permutation entropy: A tutorial review,” Eur. Phys. J. Spec. Top., vol. 222, no. 2, pp. 249–262, Jun. 2013. https://doi.org/10.1140/epjst/e2013-01862-7

E. Glerean et al., “Reorganization of functionally connected brain subnetworks in high-functioning autism,” Hum. Brain Mapp., vol. 37, pp. 1066–1079, Dec. 2015. https://doi.org/10.1002/hbm.23084

H. Hentschke; M. C. Stüttgen, “Computation of measures of effect size for neuroscience data sets.,” Eur. J. Neurosci., vol. 34, no. 12, pp. 1887–1894, Dec. 2011. https://doi.org/10.1111/j.1460-9568.2011.07902.x

T. Yokoi et al., “Involvement of the precuneus/posterior cingulate cortex is significant for the development of Alzheimer’s disease: A PET (THK5351, PiB) and resting fMRI study,” Front. Aging Neurosci., vol. 10, Oct. 2018. https://doi.org/10.3389/fnagi.2018.00304

K. N. H. Dillen et al., “Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer’s disease,” Neurobiol. Aging, vol. 44, pp. 114–126, Aug. 2016. https://doi.org/10.1016/j.neurobiolaging.2016.04.010

W. Koch et al., “Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease,” Neurobiol. Aging, vol. 33, no. 3, pp. 466–478, Mar. 2012. https://doi.org/10.1016/j.neurobiolaging.2010.04.013

P. L. Lee et al., “Posterior Cingulate Cortex Network Predicts Alzheimer’s Disease Progression,” Front. Aging Neurosci., vol. 12, Dec. 2020. https://doi.org/10.3389/fnagi.2020.608667

L. Chenxi et al., “Abnormal Brain Network Connectivity in a Triple-Network Model of Alzheimer’s Disease,” J. Alzheimers. Dis., vol. 69, no. 1, pp. 237–252, 2019. https://doi.org/10.3233/JAD-181097

W. Jagust, “Imaging the evolution and pathophysiology of Alzheimer disease,” Nat. Rev. Neurosci., vol. 19, no. 11, pp. 687–700, Nov. 2018. https://doi.org/10.1038/s41583-018-0067-3

H. Zheng; K. Onoda; A. Nagai; S. Yamaguchi, “Reduced Dynamic Complexity of BOLD Signals Differentiates Mild Cognitive Impairment From Normal Aging,” Front. Aging Neurosci., vol. 12, Apr. 2020. https://doi.org/10.3389/fnagi.2020.00090

M. Grieder; D. J. J. Wang; T. Dierks; L.-O. Wahlund; K. Jann, “Default Mode Network Complexity and Cognitive Decline in Mild Alzheimer’s Disease,” Front. Neurosci., vol. 12, Oct. 2018. https://doi.org/10.3389/fnins.2018.00770

V. Boccardi; C. Comanducci; M. Baroni; P. Mecocci, “Of energy and entropy: The ineluctable impact of aging in old age dementia,” Int. J. Mol. Sci., vol. 18, no. 12, Dec. 2017. https://doi.org/10.3390/ijms18122672

Z. Wang, “Brain Entropy Mapping in Healthy Aging and Alzheimer’s Disease,” Front. Aging Neurosci., vol. 12, p. 372, Nov. 2020. https://doi.org/10.3389/fnagi.2020.596122

E. Tagliazucchi; P. Balenzuela; D. Fraiman; D. R. Chialvo, “Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis,” Front. Physiol., vol. 3, Feb. 2012. https://doi.org/10.3389/fphys.2012.00015

A. Haimovici; E. Tagliazucchi; P. Balenzuela; D. R. Chialvo, “Brain Organization into Resting State Networks Emerges at Criticality on a Model of the Human Connectome.”, Phys. Rev. Lett., vol. 110, no.17, Apr. 2013. https://doi.org/10.1103/PhysRevLett.110.178101

D. Song; D. Chang, J. Zhang; Q. Ge; Y. F. Zang; Z. Wang, “Associations of brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-frequency fluctuations in the resting brain,” Brain Imaging Behav., vol. 13, no. 5, pp. 1486–1495, Oct. 2019. https://doi.org/10.1007/s11682-018-9963-4

L. Mera-Jiménez; J. F. Ochoa-Gómez, “Redes neuronales convolucionales para la clasificación de componentes independientes de rs-fMRI,” TecnoLógicas, vol. 24, no. 50, pp. 97–115, Jan. 2021. https://doi.org/10.22430/22565337.1626

R. Liégeois et al., “Resting brain dynamics at different timescales capture distinct aspects of human behavior,” Nat. Commun., vol. 10, no. 1, May. 2019. https://doi.org/10.1038/s41467-019-10317-7

How to Cite
[1]
A. C. Puche, J. F. Ochoa-Gómez, Y. A. Agudelo-Londoño, J. K. Rodas-Marín, and C. A. Tobón-Quintero, “Alteration of Entropy in the Precuneus and Posterior Cingulate Cortex in Alzheimer’s Disease: A Resting-State Functional Magnetic Resonance Study”, TecnoL., vol. 24, no. 52, p. e2118, Dec. 2021.

Downloads

Download data is not yet available.
Published
2021-12-16
Section
Research Papers
Crossref Cited-by logo