Optimización convexa estocástica para la corrección del factor de potencia óptimo en microrredes con generación fotovoltaica

Palabras clave: Estudios de radiación solar, factor de potencia óptimo, formulación estocástica, modelo no lineal, optimización convexa

Resumen

Esta investigación se centró en el desarrollo de una metodología para el cálculo del factor de potencia óptimo (OPF) en micro redes con generación fotovoltaica, con el fin de usar los inversores solares como compensadores reactivos, los cuales cambiaran su factor de potencia de acuerdo a las necesidades de la carga. La metodología desarrollada planteó un modelo de optimización convexo con múltiples restricciones para resolver el problema de OPF; además, fue implementada la linealización de Wirtinger en la ecuación de balance de potencia. Se consideró el comportamiento estocástico de la radiación solar utilizando la aproximación de muestreo promedio (ASA) para generar escenarios solares, los cuales son usados para calcular la magnitud de la generación de los sistemas fotovoltaicos para horas específicas del día. Finalmente, se ejecutó el algoritmo en la red de pruebas de 19 nodos de CIGRE.  La metodología propuesta mostró que, a medida que el nivel de radiación incrementa en el transcurso del día, más escenarios de radiación pueden ser puestos a prueba, lo cual aumenta la precisión del valor de factor de potencia para cada sistema PV. Aunque la idea general en los sistemas de potencia es tener un factor de potencia unitario, el algoritmo brindó como resultado factores de potencia con valores inferiores a uno en algunos inversores. Esto representa una inyección de potencia reactiva desde los inversores para suplir las necesidades de reactivos de las cargas conectadas cerca a dichos generadores PV, lo cual se refleja en una variación en la magnitud del factor de potencia.

Biografía del autor/a

Alexander Casilimas Peña*, Universidad Nacional Autónoma de México, México

Universidad Nacional Autónoma de México, Instituto de ingenierías, Ciudad de México-México, acasilimasp@iingen.unam.mx

Oscar Danilo Montoya, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá-Colombia, odmontoyag@udistrital.edu.co

Alejandro Garcés Ruiz, Universidad Tecnológica de Pereira, Colombia

Universidad Tecnológica de Pereira, Pereira-Colombia, alejandro.garces@utp.edu.co

César Ángeles Camacho , Universidad Nacional Autónoma de México, México

Universidad Nacional Autónoma de México, Instituto de ingenierías, Ciudad de México-México, cangelesc@iingen.unam.mx

Referencias bibliográficas

W. Y. Atmaja, M. P. Lesnanto, and E. Y. Pramono, “Hosting Capacity Improvement Using Reactive Power Control Strategy of Rooftop PV Inverters,” In 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, Canada: SEGE, Aug. 2019, pp. 213-217. IEEE, https://doi.org/10.1109/SEGE.2019.8859888

M. Rabiul-Islam, A. M. Mahfuz-Ur-Rahman, K. M. Muttaqi, and D. Sutanto, “State-of-The-Art of the Medium-Voltage Power Converter Technologies for Grid Integration of Solar Photovoltaic Power Plants,” IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 372–384, Mar. 2019, https://doi.org/10.1109/TEC.2018.2878885

S. Amara and H. Abdallah-Hsan, "Power system stability improvement by FACTS devices: A comparison between STATCOM, SSSC and UPFC," in 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia: March 2012, pp. 360-365, https://doi.org/10.1109/REVET.2012.6195297

C. Ángeles-Camacho, and F. Bañuelos-Ruedas, "FACTS: Its Role in the Connection of Wind Power to Power Networks", in Wind Farm - Impact in Power System and Alternatives to Improve the Integration. London, United Kingdom: IntechOpen, 2011, pp. 93-108. https://doi.org/10.5772/21200

W. Lu, S. Lang, L. Zhou, H. H. C. Iu, and T. Fernando, “Improvement of stability and power factor in PCM controlled boost PFC converter with hybrid dynamic compensation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 320–328, Jan. 2015, https://doi.org/10.1109/TCSI.2014.2346111

N. Hatziargyriou, S. Papathanassiou, S. Papathanassiou, N. Hatziargyriou, and K. Strunz, “A benchmark low voltage microgrid network.” in Proceedings of the CIGRE symposium: power systems with dispersed generation, Athens, 01 2005, pp. 1-8. https://www.researchgate.net/profile/NikosHatziargyriou/publication/237305036_A_Benchmark_Low_Voltage_Microgrid_Network/links/00b7d5269306c54780000000/A-Benchmark-Low-Voltage-Microgrid-Network.pdf

A. Garcés, W. Gil-González, O. D. Montoya, H. R. Chamorro, and L. Alvarado-Barrios, “A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids,” Applied Sciences, vol. 11, no. 5, pp. 1972, Feb. 2021, https://doi.org/10.3390/app11051972

M. Hamzeh, H. Mokhtari, and H. Karimi, “A decentralized self-adjusting control strategy for reactive power management in an islanded multi-bus MV microgrid,” Canadian Journal of Electrical and Computer Engineering, vol. 36, no. 1, pp. 18–25, 2013, https://doi.org/10.1109/CJECE.2013.6544468

S. Bolognani and S. Zampieri, “A distributed control strategy for reactive power compensation in smart microgrids,” IEEE Transactions on Automatic Control, vol. 58, no. 11, pp. 2818–2833, 2013, https://doi.org/10.1109/TAC.2013.2270317

Y. Zhu, F. Zhuo, F. Wang, B. Liu, R. Gou, and Y. Zhao, “A virtual impedance optimization method for reactive power sharing in networked microgrid,” IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2890–2904, Apr. 2016, https://doi.org/10.1109/TPEL.2015.2450360

M. A. Arif, M. Ndoye, G. V. Murphy, and K. Aganah, “A stochastic game framework for reactive power reserve optimization and voltage profile improvement,” in 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), San Antonio TX, Sep. 2017, pp. 1–6. https://doi.org/10.1109/ISAP.2017.8071372

Y. Wang, X. Wang, Z. Chen, and F. Blaabjerg, “Distributed optimal control of reactive power and voltage in islanded microgrids,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, May 2016, vol. 2016-May, pp. 3431–3438. https://doi.org/10.1109/APEC.2016.7468360

Y. Han, H. Li, P. Shen, E. A. A. Coelho, and J. M. Guerrero, “Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids,” IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2427–2451, Mar. 01, 2017. https://doi.org/10.1109/TPEL.2016.2569597

H. Morais, T. Sousa, P. Faria and Z. Vale, "Reactive power management strategies in future smart grids," in 2013 IEEE Power & Energy Society General Meeting, 2013, pp. 1-5. https://doi.org/10.1109/PESMG.2013.6672332

A. Águila-Téllez, G. L. Opez, I. Isaac, and J. W. Gonz Alez, “Optimal reactive power compensation in electrical distribution systems with distributed resources. Review,” Heliyon, 2018, vol. 4, p. 746. https://doi.org/10.1016/j.heliyon.2018.e00746

V. Kekatos, G. Wang, A. J. Conejo, and G. B. Giannakis, “Stochastic Reactive Power Management in Microgrids with Renewables,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3386–3395, Nov. 2015, https://doi.org/10.1109/TPWRS.2014.2369452

S. M. Mohseni‐Bonab and A. Rabiee, “Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi‐objective model at the presence of uncertain wind power generation”. IET Generation, Transmission & Distribution, vol. 11, no. 4, pp. 815-829, March 2017. https://doi.org/10.1049/iet-gtd.2016.1545

M. Ghaljehei, Z. Soltani, J. Lin, G. B. Gharehpetian, and M. A. Golkar, “Stochastic multi-objective optimal energy and reactive power dispatch considering cost, loading margin and coordinated reactive power reserve management,” Electric Power Systems Research, vol. 166, pp. 163–177, Jan. 2019, https://doi.org/10.1016/J.EPSR.2018.10.009

M. Nazmul, I. Sarkar, G. Meegahapola, M. Datta, and L. G. Meegahapola, “Reactive Power Management in Renewable Rich Power Grids: A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms,” IEEE Access, vol. 6, pp. 41458-41489, Aug. 2018, https://doi.org/10.1109/ACCESS.2018.2838563

J. F. Gómez-González et al., “Reactive power management in photovoltaic installations connected to low-voltage grids to avoid active power curtailment,” Renewable Energy and Power Quality Journal, vol. 1, no. 16, pp. 5–11, Apr. 2018, https://doi.org/10.24084/repqj16.003

A. Shaker, A. Safari, and M. Shahidehpour, “Reactive Power Management for Networked Microgrid Resilience in Extreme Conditions,” IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 3940–3953, Sept. 2021, https://doi.org/10.1109/TSG.2021.3068049

T. Abreu, T. Soares, L. Carvalho, H. Morais, T. Simão, and M. Louro, “Reactive Power Management Considering Stochastic Optimization under the Portuguese Reactive Power Policy Applied to DER in Distribution Networks,” Energies, vol. 12, no. 21, p. 4028, Oct. 2019, https://doi.org/10.3390/en12214028

S. Souri, H. M. Shourkaei, S. Soleymani, and B. Mozafari, “Flexible reactive power management using PV inverter overrating capabilities and fixed capacitor,” Electric Power Systems Research, vol. 209, p. 107927, Aug. 2022, http://doi.org/10.1016/J.EPSR.2022.107927

A. Mehbodniya, A. Paeizi, M. Rezaie, M. Azimian, H. Masrur, and T. Senjyu, “Active and Reactive Power Management in the Smart Distribution Network Enriched with Wind Turbines and Photovoltaic Systems,” Sustainability, vol. 14, no. 7, p. 4273, April 2022, https://doi.org/10.3390/su14074273

D. A. Ramírez, A. Garcés, and J. Mora-Florez, "A Wirtinger Linearization for the Power Flow in Microgrids," in 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, 2019, pp. 1-5, https://doi.org/10.1109/PESGM40551.2019.8973647

S. P. Boyd and L. Vandenberghe, Convex optimization. 1st ed., Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441

S. Bolognani and S. Zampieri, “On the existence and linear approximation of the power flow solution in power distribution networks,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 163–172, Jan. 2016, https://doi.org/10.1109/TPWRS.2015.2395452

J. R. Martí, H. Ahmadi, and L. Bashualdo, “Linear power-flow formulation based on a voltage-dependent load model,” IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1682–1690, 2013, https://doi.org/10.1109/TPWRD.2013.2247068

Y. Wang, N. Zhang, H. Li, J. Yang, and C. Kang, “Linear three-phase power flow for unbalanced active distribution networks with PV nodes”. CSEE Journal of Power and Energy Systems, vol. 3, no. 3, pp. 321-324, Sept. 2017, https://doi.org/10.17775/CSEEJPES.2017.00240

Cómo citar
[1]
A. Casilimas Peña, O. D. Montoya, A. Garcés Ruiz, y C. Ángeles Camacho, «Optimización convexa estocástica para la corrección del factor de potencia óptimo en microrredes con generación fotovoltaica», TecnoL., vol. 25, n.º 55, p. e2355, nov. 2022.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2022-11-02
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo