Determination of Zones and Tall Structures with the Greatest Number of Lightning Strikes

Keywords: Cloud-to-Ground Lightning strokes, Ground Flash Density (GFD), elevated structures, hotspots, LINET network


High lightning activity sites have been characterized using methodologies based on the spatial occurrence of lightning through parameters such as Ground Flash Density, GFD. This work found the areas with the highest number of lightning strikes (hotspots) in some Colombian cities through a methodology based on the temporal occurrence of lightning. Likewise, the influence of elevated structures on lightning activity in these regions is determined. Polygons of 600 meters on each side were located on the surface of the study cities. Based on lightning information (strokes) provided by the Colombian Network of Total Lightning Detection with LINET technology between 2016 and 2018, the number of impacts per polygon was determined, making it possible to identify the areas in which the incidence of lightning is recurrent. Elevated structures were located in each of the study cities to determine which of them corresponded to hotspots. The results showed that the main hotspots are far from urban areas and that most of these sites coincide with elevated structures. Possible causes of these lightning strikes are also explained, such as meteorological variables, relief, precipitation, and charge distributions in storm clouds. Urbanism is found to have a marked influence on the determination of hotspots and that urbanism and elevated structures increase lightning activity in the study areas.


Author Biographies

Javier Mora , Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia,

Julián Rojas-Avellaneda, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia,

Brandon Steven Ardila-Murillo*, Universidad Industrial de Santander

Universidad Industrial de Santander, Bucaramanga-Colombia,

Edison Soto-Ríos, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia,


E. Williams; K. Rothkin; D. Stevenson; D. Boccippio, “Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms”, J. Appl. Meteorol., vol. 39, no. 12, pp. 2223–2230, Dec. 2000.

D. Mackerras; M. Darveniza; R. E. Orville; E. R. Williams; S. J. Goodman, “Global lightning: Total, cloud and ground flash estimates”, J. Geophys. Res. Atmos., vol. 103, no. D16, pp. 19791-19809, Aug. 1998.

H. J. Christian et al., “Global frequency and distribution of lightning as observed from space by the Optical Transient Detector”, J. Geophys. Res. D Atmos., Vol. 08, no. D1, pp. ACL 4-1-ACL 4-15, Jan. 2003.

R. I. Albrecht; S. J. Goodman; D. E. Buechler; R. J. Blakeslee; H. J. Christian, “Where are the lightning hotspots on earth?”, Bull. Am. Meteorol. Soc., vol. 97. no. 11, pp. 2051–2068, Nov. 2016.

J. Obbard, “Our Changing Planet: The View from Space”, J. Environ. Qual., vol. 38, no. 1, pp. 377-377, Jan. 2009.

D. J. Cecil; D. E. Buechler; R. J. Blakeslee, “Gridded lightning climatology from TRMM-LIS and OTD: Dataset description”, Atmos. Res., vol. 135–136, pp. 404-414, Jan. 2014.

M. Peterson; D. Mach; D. Buechler, “A Global LIS/OTD Climatology of Lightning Flash Extent Density”, J. Geophys. Res. Atmos., vol. 126, no. 8, pp. 1-23, Apr. 2021.

M. L. Bah; M. Tounkara; C. Gomes; A. Davidov; J. Anderson, “Lightning occurrence density in Guinea”, in 2014 International Conference on Lightning Protection (ICLP), Shanghai, 2014, pp. 1902-1908.

C. K. Unnikrishnan; S. Pawar; V. Gopalakrishnan, “Satellite-observed lightning hotspots in India and lightning variability over tropical South India”, Adv. Sp. Res., vol. 68, no. 4, pp. 1690-1705, Aug. 2021.

A. Dewan; E. T. Ongee; M. M. Rahman; R. Mahmood; Y. Yamane, “Spatial and temporal analysis of a 17-year lightning climatology over Bangladesh with LIS data”, Theor. Appl. Climatol., vol. 134, pp. 347–362, Oct. 2017.

B. Kucienska; G. B. Raga; R. Romero-Centeno, “High lightning activity in maritime clouds near Mexico”, Atmos. Chem. Phys., vol. 12, no. 17, pp. 8055–8072, Sep. 2012.

J. A. Amador; D. Arce-Fernández, “WWLLN Hot and Cold-Spots of Lightning Activity and Their Relation to Climate in an Extended Central America Region 2012–2020”, Atmosphere, vol. 13, no. 1, Jan. 2022

Y. Kuleshov; D. Mackerras; M. Darveniza, “Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia”, J. Geophys. Res. Atmos., vol. 111, no. D19, pp. 1-14, Oct. 2006.

S. E. Enno; J. Sugier; R. Alber; M. Seltzer, “Lightning flash density in Europe based on 10 years of ATDnet data”, Atmos. Res., vol. 235, p. 104769, May. 2020.

J. Inampués; D. Aranguren; A. Cruz; J. Gonzalez; H. Torres; H. D. Betz, “Severe thunderstorms in the Colombia and Venezuela high lightning active areas”, in 2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, 2017, pp. 359-364.

J. Herrera; C. Younes; L. Porras, “Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data”, Atmos. Res., vol. 203, pp. 164-174, May. 2018.

H. Torres Sánchez, El Rayo: mitos, leyendas, ciencia y tecnología. Universidad Nacional de Colombia - Sede Bogotá, Facultad de Ingeniería. UNIBIBLOS. 2002.

J. Herrera-Murcia; C. Younes-Velosa; L. Porras, “Variation of lightning peak current parameter as a function of cloud-to-ground lightning flash density in Colombia”, in 2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, 2017, pp. 336-340.

D. Aranguren et al., “Colombian Total Lightning Detection Network and early detection of failure risks for power systems”, in Simp. Int. sobre Calid. la Energía Eléctrica (VII SICEL), pp. 1–6, 2013.

D. F. del Río Trujillo, “Evaluación del efecto urbano sobre los parámetros del rayo. Caso Colombiano”. (Tesis de Doctorado), Facultad de Ingeniería y Arquitectura. Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Manizales, 2018.

J. Mora et al., “Identification of areas and elevated structures with the greatest amount of lightning impacts (Hotspots)”, Simp. Int. sobre Calid. la Energía Eléctrica (X SICEL), 2021.

H. Ḧoller et al., “Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany”, Atmos. Chem. Phys., vol. 9, no, 20, pp. 7795–7824, Oct. 2009.

J. A. López et al., “Charge Structure of Two Tropical Thunderstorms in Colombia”, J. Geophys. Res. Atmos., vol. 124, no. 10, pp. 5503-5515, Apr. 2019.

Keraunos S.A.S, “Red Colombiana de detección total de rayos - LINET”, 2015.

D. Aranguren; J. López; J. Inampués; H. Torres; H. D. Betz, “Cloud-to-ground ligthning activity in Colombia and the influence of topography”, in 2014 International Conference on Lightning Protection (ICLP), Shanghai, 2014, pp. 1850-1855.

ICONTEC, “NTC 4552 Protección contra Rayos”, Ntc 4552, 2004.

C. A. Cruz Mosquera, “Evaluación del Riesgo por Rayos Incluyendo un Sistema de Alarma de Tormentas (SAT) en Colombia”, (Tesis de Maestría), Facultad de Ingeniería, Departamento de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Colombia, Bogotá, 2015.

H. O. Benavides; G. E. León Aristizabal, “Información técnica sobre Gases de Efecto Invernadero y el cambio climático.”, Instituto de Hidrología, Meteorología y Estudios Ambientales - Ideam, pp. 1–102, 2007.–METEO/008-2007

B. S. Ardila Murillo; E. A. Soto Ríos; K. A. Velandia López, “Actividad de rayos en el departamento de Santander entre 2014 y 2016”, Ingeniería, vol. 26, no. 3, pp. 419–435, Jan. 2022.

IDEAM, “Atlas-IDEAM”, Tiempo y clima / Atlas, 2021.

M. A. Uman, The art and science of lightning protection. Cambridge: Cambridge University Press, 2008.

E. R. Williams, “Lightning and climate: A review”, Atmos. Res., vol. 76, no. 1-4, pp. 272-287, Jul. 2005.

C. Price, “Thunderstorms, lightning and climate change”, in Lightning: Principles, Instruments and Applications: Review of Modern Lightning Research, pp 521–535, Springer, 2009.

G. Poveda Jaramillo, “El Clima de Antioquia”, Geogr. Antioquia, Fondo Editorial Universidad Eafit, M. Hermelin, pp. 117- 128, Jan. 2006.

N. Pineda; J. Montanyà; A. Salvador; O. A. van der Velde; J. A. López, “Thunderstorm characteristics favouring downward and upward lightning to wind turbines”, Atmos. Res., vol. 214, pp. 46-63, Dec. 2018.

B. Ardila Murillo; E. A. Soto Ríos; D. Argüello Barbosa; H. Tello Rodríguez; J. López Trujillo; J. Montanyá, “Análisis de estructuras de carga de dos tormentas eléctricas registradas por la red Lightning Mapping Array en el Magdalena Medio colombiano”, Ingeniería, vol. 7, no. 2, p.p. e17925, Abr. 2022.

L. Gartland, Heat Islands: Understanding and mitigating heat in urban areas, Routledge, 2010.

How to Cite
J. Mora, J. Rojas-Avellaneda, B. S. Ardila-Murillo, and E. Soto-Ríos, “Determination of Zones and Tall Structures with the Greatest Number of Lightning Strikes”, TecnoL., vol. 25, no. 54, p. e2376, Aug. 2022.


Download data is not yet available.
Research Papers
Crossref Cited-by logo