Evaluación probabilística y armónica de parámetros de calidad de energía de recursos energéticos distribuidos en una red de distribución

Palabras clave: Recursos energéticos distribuidos, co-simulación Python-PowerFactory, flujo de carga probabilístico, distorsión armónica, estadística inferencial

Resumen

Los recursos energéticos distribuidos (RED) son actores líderes en la transición energética en todo el mundo. A pesar de los beneficios ambientales, los RED son intermitentes (la energía de consumo/generación cambia según las variables de entrada), y el uso de dispositivos de electrónica de potencia afecta la calidad de la energía en las redes de distribución. Por lo general, se proponen modelos y simulaciones (deterministas o probabilísticas) para estimar dichos impactos. Sin embargo, estudios previos han analizado los principales efectos causados por uno o dos RED durante un día, con un nivel de detalle reducido en la metodología aplicada en el modelado y evaluación de impacto, o sin considerar que el nivel de distorsión armónica depende de las variables de entrada. El objetivo del presente artículo fue desarrollar un enfoque de simulación armónica probabilística para caracterizar el efecto horario de los sistemas fotovoltaicos (SFV), los sistemas de almacenamiento de energía de baterías y las estaciones de carga de vehículos eléctricos en un alimentador de prueba IEEE de 34 nodos. La estimación del efecto individual y colectivo del RED consistió en la cuantificación horaria del valor efectivo de tensión, desequilibrio de tensión, factor de potencia y distorsión armónica, con datos obtenidos mediante co-simulación Python y PowerFactory para 23 escenarios de operación. Estos impactos fueron evaluados a través de indicadores propuestos en la literatura y pruebas de hipótesis (estadística inferencial). Cada RED generalmente opera en un momento específico, lo que facilita la identificación de los efectos individuales de los parámetros de la red. El SFV aumentó el valor de voltaje efectivo y la distorsión armónica total. Sin embargo, los vehículos eléctricos y las baterías aumentan el desequilibrio de tensión y el factor de potencia debido a la conexión bifásica en algunos nodos de la red.

Biografía del autor/a

Juan Caballero-Peña, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, juan.caballero1@correo.uis.edu.co

German Osma-Pinto, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, gealosma@e3t.uis.edu.co

Referencias bibliográficas

N. T. Mbungu, R. M. Naidoo, R. C. Bansal, M. W. Siti, and D. H. Tungadio, “An overview of renewable energy resources and grid integration for commercial building applications,” J. Energy Storage, vol. 29, p. 101385, Jun. 2020. https://doi.org/10.1016/j.est.2020.101385

P. Sharma, H. D. Mathur, P. Mishra, and R. C. Bansal, “A critical and comparative review of energy management strategies for microgrids,” Appl. Energy, vol. 327, p. 120028, Dec. 2022. https://doi.org/10.1016/j.apenergy.2022.120028

Y. Liu, and L. Wu, “Integrating Distributed Energy Resources into the Independent System Operators’ Energy Market: A Review,” Current Sustainable/Renewable Energy Reports, vol. 8, pp. 233–241, Aug. 2021. https://doi.org/10.1007/s40518-021-00190-8

M. Kumar, “Social, Economic, and Environmental Impacts of Renewable Energy Resources,” in Wind Solar Hybrid Renwable Energy System, London, UK: IntechOpen, 2020, pp. 227–235. https://doi.org/10.5772/intechopen.89494

J. Caballero-Peña, C. Cadena-Zarate, A. Parrado-Duque, and G. Osma-Pinto, “Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts,” International Journal of Electrical Power and Energy Systems, vol. 138, p. 107900, Jun. 2022. https://doi.org/10.1016/j.ijepes.2021.107900

A. J. Veldhuis, M. Leach, and A. Yang, “The impact of increased decentralised generation on the reliability of an existing electricity network,” Appl. Energy, vol. 215, pp. 479–502, Apr. 2018. https://doi.org/10.1016/j.apenergy.2018.02.009

T. Senjyu, and A. M. Howlader, “Operational aspects of distribution systems with massive DER penetrations,” in Integration of Distributed Energy Resources in Power Systems, Elsevier, 2016, pp. 51–76. https://doi.org/10.1016/B978-0-12-803212-1.00003-9

J. H. R. Enslin, and P. J. M. Heskes, “Harmonic-interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1586–1593, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836615

A. Arguello, J. D. Lara, J. D. Rojas, and G. Valverde, “Impact of Rooftop PV Integration in Distribution Systems Considering Socioeconomic Factors,” IEEE Syst. J., vol. 12, no. 4, pp. 3531–3542, Dec. 2018. https://doi.org/10.1109/JSYST.2017.2739022

I. C. Barutcu, E. Karatepe, and M. Boztepe, “Impact of harmonic limits on PV penetration levels in unbalanced distribution networks considering load and irradiance uncertainty,” International Journal of Electrical Power and Energy Systems, vol. 118, p. 105780, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105780

Y. Yu et al., “Data-Driven Study of Low Voltage Distribution Grid Behaviour with Increasing Electric Vehicle Penetration,” IEEE Access, vol. 10, pp. 6053–6070, Jan. 2022. https://doi.org/10.1109/ACCESS.2021.3140162

M. N. Iqbal, L. Kütt, K. Daniel, B. Asad, and P. S. Ghahfarokhi, “Estimation of harmonic emission of electric vehicles and their impact on low voltage residential network,” Sustainability, vol. 13, no. 15, p. 8551, Jul. 2021. https://doi.org/10.3390/su13158551

S. Choudhury, “Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects,” Journal of Energy Storage, vol. 48, p. 103966, Apr. 2022. https://doi.org/10.1016/j.est.2022.103966

M. T. Tolmasquim, P. M. A. Senra, A. R. Gouvêa, A. O. Pereira Jr, A. C. Alves, and M. Moszkowicz, “Strategies of electricity distributors in the context of distributed energy resources diffusion,” Environ Impact Assess Rev., vol. 84, p. 106429, Sep. 2020. https://doi.org/10.1016/j.eiar.2020.106429

1547-2018 - IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE, Piscataway, NJ, USA, 2018. https://doi.org/10.1109/IEEESTD.2018.8332112

J. L. Moreira Pereira, A. F. Raiol Leal, G. Oliveira de Almeida, and M. E. de L. Tostes, “Harmonic effects due to the high penetration of photovoltaic generation into a distribution system,” Energies, vol. 14, no. 13, p. 4021, Jul. 2021. https://doi.org/10.3390/en14134021

M. Ahmed, Nahid-Al-Masood, and S. R. Deeba, “Impact of integrating battery energy storage system on harmonic distortion in an industrial microgrid,” in 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 2020, pp. 712–717. https://doi.org/10.1109/SGES51519.2020.00132

U. H. Ramadhani, R. Fachrizal, M. Shepero, J. Munkhammar, and J. Widén, “Probabilistic load flow analysis of electric vehicle smart charging in unbalanced LV distribution systems with residential photovoltaic generation,” Sustain. Cities and Soc., vol. 72, p. 103043, Sep. 2021. https://doi.org/10.1016/j.scs.2021.103043

M. Al-Saadi et al., “Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet,” Energies, vol. 15, no. 4, p. 1424, Feb. 2022. https://doi.org/10.3390/en15041424

B. R. Prusty, and D. Jena, “A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach,” Renewable and Sustainable Energy Reviews, vol. 69, pp. 1286–1302, Mar. 2017. https://doi.org/10.1016/j.rser.2016.12.044

A. Martínez-Peñaloza, and G. Osma-Pinto, “Analysis of the performance of the norton equivalent model of a photovoltaic system under different operating scenarios,” International Review of Electrical Engineering, vol. 16, no. 4, pp. 328–343, 2021. https://doi.org/10.15866/iree.v16i4.20278

J. H. Angelim, and C. de M. Affonso, “Probabilistic assessment of voltage quality on solar-powered electric vehicle charging station,” Electric Power Systems Research, vol. 189, p. 106655, Dec. 2020. https://doi.org/10.1016/j.epsr.2020.106655

L. M. Caro, G. Ramos, K. Rauma, D. F. C. Rodriguez, D. M. Martinez, and C. Rehtanz, "State of Charge Influence on the Harmonic Distortion from Electric Vehicle Charging," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2077-2088, May-Jun. 2021. https://doi.org/10.1109/TIA.2021.3057350

F. E. Postigo Marcos et al., “A review of power distribution test feeders in the United States and the need for synthetic representative networks,” Energies, vol. 10, no. 11, p. 1896, Nov. 2017. https://doi.org/10.3390/en10111896

K. P. Schneider et al., “Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3181–3188, May. 2018. https://doi.org/10.1109/TPWRS.2017.2760011

IEEE, “IEEE PES Test Feeder.” Accessed: Oct. 09, 2023. [Online]. Available: https://cmte.ieee.org/pes-testfeeders/resources/

L. F. Buitrago Arroyave, and J. M. López Lezama, “Valoración de los impactos técnicos de la generación distribuida en sistemas de energía eléctrica,” Tecnura, vol. 17, no. 36, pp. 50–60, Apr-Jun. 2013. https://www.redalyc.org/articulo.oa?id=257028093005

M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, and A. H. A. Bakar, “Photovoltaic penetration issues and impacts in distribution network – A review,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 594–605, Jan. 2016. https://doi.org/10.1016/j.rser.2015.08.042

V. Ignatova, D. Villard, and J. M. Hypolite, “Simple indicators for an effective Power Quality monitoring and analysis,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1104-1108. https://doi.org/10.1109/EEEIC.2015.7165321

I. Daut, S. Hasan, and S. Taib, “Magnetizing Current, Harmonic Content and Power Factor as the Indicators of Transformer Core Saturation,” Journal of Clean Energy Technologies, vol. 1 no. 4. pp. 304–307, Oct. 2013. https://doi.org/10.7763/jocet.2013.v1.69

E. Mancini, M. Longo, W. Yaici, and D. Zaninelli, “Assessment of the Impact of Electric Vehicles on the Design and Effectiveness of Electric Distribution Grid with Distributed Generation,” Applied Sciences, vol. 10, no. 15, p.5125, Jul. 2020. https://doi.org/10.3390/app10155125

G. Osma-Pinto, M. García-Rodríguez, J. Moreno-Vargas, and C. Duarte-Gualdrón, “Impact evaluation of grid-connected PV systems on PQ parameters by comparative analysis based on inferential statistics,” Energies, vol. 13, no. 7, p. 1668, Apr. 2020. https://doi.org/10.3390/en13071668

Cómo citar
[1]
J. Caballero-Peña y G. Osma-Pinto, «Evaluación probabilística y armónica de parámetros de calidad de energía de recursos energéticos distribuidos en una red de distribución», TecnoL., vol. 27, n.º 59, p. e2684, ene. 2024.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2024-01-30
Sección
Artículos de investigación

Métricas

Datos de los fondos

Crossref Cited-by logo