Evaluación de la actividad bactericida de GO electroquímico modificado con nanopartículas de TiO2

Palabras clave: Actividad bactericida, nanomaterial híbrido, óxido de grafeno, dióxido de titanio

Resumen

Recientemente, los materiales antibacterianos han despertado un renovado interés en el campo de la ingeniería biomédica y las ciencias de la vida. El objetivo de este estudio consistió en evaluar las propiedades fisicoquímicas de nanopartículas de TiO2 fase anatasa y un tamaño medio de 24.1 ± 4.6 nm, óxido de grafeno (GO) obtenido a partir del método electroquímico y un nanomaterial hibrido TiO2/GO. El análisis termogravimétrico (TGA) reveló la presencia de funcionalidades de oxígeno en la estructura del GO, y se encontró un 23.2 % de TiO2 en el nanomaterial híbrido y una fuerte interacción entre los materiales que puede observarse en las micrografías de microscopia electrónica de barrido (SEM). Las pruebas antibacterianas fueron realizadas usando el método de macrodilución. Los resultados evidenciaron que, mientras que el GO no disminuyó el crecimiento bacteriano, el TiO2 presentó una alta actividad bactericida. A su vez, el nanomaterial híbrido TiO2/GO no mostró dicha actividad. Este resultado puede explicarse por la disminución del contacto entre el TiO2 y las células bacterianas debido al bloqueo de los sitios activos en la superficie del TiO2 por las láminas de óxido de grafeno. Estos resultados contribuyen a la discusión en curso sobre las propiedades bactericidas del óxido de grafeno.

Biografía del autor/a

Geraldine Durango Giraldo*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín – Colombia, Universidad Politécnica de Catalunya, Barcelona – España, geraldinedurango189834@correo.itm.edu.co

Juan Camilo Zapata-Hernández, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín – Colombia, juanzapatah@itm.edu.co

Claudia Betancur Henao, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín – Colombia, claudiabetancur@itm.edu.co

Juan Felipe Santa Marín, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano,Medellín – Colombia, Universidad Nacional de Colombia, Medellín  – Colombia, juansanta@itm.edu.co

Robison Buitrago Sierra, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín – Colombia, robinsonbuitrago@itm.edu.co

Referencias bibliográficas

H. A. Khan, A. Ahmad, and R. Mehboob, “Nosocomial infections and their control strategies,” Asian Pac. J. Trop. Biomed., vol. 5, no. 7, pp. 509–514, Jul. 2015. https://doi.org/10.1016/j.apjtb.2015.05.001

S. L. Percival, and D. W. Williams, “Escherichia coli,” in Microbiology of Waterborne Diseases, Elsevier, 2014, pp. 89–117. https://doi.org/10.1016/B978-0-12-415846-7.00006-8

E. P. Dellinger, “Prevention of Hospital-Acquired Infections,” Surg Infect (Larchmt)., vol. 17, no. 4, pp. 422–426, Jul. 2016. https://doi.org/10.1089/sur.2016.048

Z. Chao, W. Xinru, L. Aihui, C. Pan, H. Ding, and Y. Wei, “Reduced graphene oxide/titanium dioxide hybrid nanofiller-reinforced electrospun silk fibroin scaffolds for tissue engineering - ScienceDirect,” Mater. Lett., vol. 291, p. 129563, May. 2021. https://doi.org/10.1016/j.matlet.2021.129563

C. Ying-Na et al., “Synthesis of magnetic graphene oxide-TiO 2 and their antibacterial properties under solar irradiation,” Appl. Surf. Sci., vol. 343, pp. 1–10, Jul. 2015. https://doi.org/10.1016/j.apsusc.2015.03.082

H. Mohammed et al., “Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review,” Front. Bioeng. Biotechnol., vol. 8, May. 2020. https://doi.org/10.3389/fbioe.2020.00465

H. M. Hegab, A. Elmekawy, L. Zou, D. Mulcahy, C. P. Saint, and M. Ginic-Markovic, “The controversial antibacterial activity of graphene-based materials,” Carbon N. Y., vol. 105, pp. 362–376, Aug. 2016. https://doi.org/10.1016/j.carbon.2016.04.046

J. Qiu, L. Liu, H. Zhu, and X. Liu, “Combination types between graphene oxide and substrate affect the antibacterial activity,” Bioactive Materials, vol. 3, no. 3, pp. 341–346, Sep. 2018. https://doi.org/10.1016/j.bioactmat.2018.05.001

A. A. Menazea, and M. K. Ahmed, “Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles,” J. Mol. Struct., vol. 1218, p. 128536, Oct. 2020. https://doi.org/10.1016/j.molstruc.2020.128536

K. Zhu, H. Tian, X. Zheng, L. Wang, and X. Wang, “Triangular silver nanoparticles loaded on graphene oxide sheets as an antibacterial film,” Materials Letters, vol. 275, p. 128162, Sep. 2020. https://doi.org/10.1016/j.matlet.2020.128162

H. Feng, R. Cheng, X. Zhao, X. Duan, and J. Li, “A low-temperature method to produce highly reduced graphene oxide,” Nat. Commun., vol. 4, p.1539, Feb. 2013. https://doi.org/10.1038/ncomms2555

M. J. Fernández-Merino et al., “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions,” Journal of Physical Chemistry C., vol. 114, no. 14, pp. 6426–6432, Mar. 2010. https://doi.org/10.1021/jp100603h

C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, and Y. Cui, “Fabrication and characteristics of reduced graphene oxide produced with different green reductants,” PLoS One, vol. 10, no. 12, p. e0144842, Dec. 2015. https://doi.org/10.1371/journal.pone.0144842

V. Likodimos, “Photonic crystal-assisted visible light activated TiO2photocatalysis,” Appl. Catal. B: Environmental., vol. 230, pp. 269–303, Aug. 2018. https://doi.org/10.1016/j.apcatb.2018.02.039

C. Dette et al., “TiO2 Anatase with a Bandgap in the Visible Region,” Nano. Lett., vol. 14, no. 11, pp. 6533–6538, Sep. 2014. https://doi.org/10.1021/nl503131s

U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., vol. 48, no. 5–8, pp. 53–229, Jan. 2003. https://doi.org/10.1016/S0167-5729(02)00100-0

A. J. Haider, Z. N. Jameel, and I. H. M. Al-Hussaini, “Review on: Titanium dioxide applications,” Energy Procedia, vol. 157, pp. 17–29, Jan. 2019. https://doi.org/10.1016/j.egypro.2018.11.159

T. Gakhar, and A. Hazra, “p-TiO2/GO heterojunction based VOC sensors: A new approach to amplify sensitivity in FET structure at optimized gate voltage,” Measurement, vol. 182, p. 109721, Sep. 2021. https://doi.org/10.1016/J.MEASUREMENT.2021.109721

Y. Sang et al., “Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method,” Small, vol. 10, no. 18, pp. 3775–3782, Sep. 2014. https://doi.org/10.1002/SMLL.201303489

W. Fan, Q. Lai, Q. Zhang, and Y. Wang, “Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution,” Journal of Physical Chemistry C, vol. 115, no. 21, pp. 10694–10701, May. 2011. https://doi.org/10.1021/JP2008804

M. Karimi-Nazarabad, E. K. Goharshadi, and M. Aziznezhad, “Solar Mineralization of Hard-Degradable Amphetamine Using TiO2/RGO Nanocomposite,” ChemistrySelect, vol. 4, no. 48, pp. 14175–14183, Dec. 2019. https://doi.org/10.1002/SLCT.201903943

Y. Jia, C. Hu, P. Shi, Q. Xu, W. Zhu, and R. Liu, “Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in PVA nanocomposites,” Int. J. Biol. Macromol., vol. 161, pp. 223–230, Oct. 2020. https://doi.org/10.1016/J.IJBIOMAC.2020.06.013

I. Kartini, P. Meredith, J. C. D. Da Costa, and G. Q. Lu, “A novel route to the synthesis of mesoporous titania with full anatase nanocrystalline domains,” J. Solgel. Sci. Technol., vol. 31, no. 1-3, pp. 185–189, Aug. 2004. https://doi.org/10.1023/B:JSST.0000047984.60654.a1

G. Durango-Giraldo, A. Cardona, J. F. Zapata, J. F. Santa, and R. Buitrago-Sierra, “Titanium dioxide modified with silver by two methods for bactericidal applications,” Heliyon, vol. 5, no. 5, p. e01608, May. 2019. https://doi.org/10.1016/j.heliyon.2019.e01608

R. Boardman, and R. A. Smith, “Evaluating the efficacy of an essential oil extract of thyme (Thymus vulgaris) against methicillin-sensitive and methicillin-resistant strains of Staphylococci,” American Journal of Essential Oils and Natural Products, vol. 4, no. 2, pp. 17–22, Apr. 2016. https://www.essencejournal.com/pdf/2016/vol4issue2/PartA/4-2-3-902.pdf

C. Zapata-Hernandez, G. Durango-Giraldo, K. Cauca, and R. Buitrago-Sierra, “Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites,” The Journal of The Textile Institute, vol. 113, no. 1, pp. 131-140, Dec. 2020. https://doi.org/10.1080/00405000.2020.1865507

X. Wei, G. Zhu, J. Fang, and J. Chen, “Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles,” International Journal of Photoenergy, vol. 2013, Apr. 2013. https://doi.org/10.1155/2013/726872

S. E. Bourdo et al., “Physicochemical characteristics of pristine and functionalized graphene,” Journal of Applied Toxicology, vol. 37, no. 11, pp. 1288–1296, Nov. 2017. https://doi.org/10.1002/jat.3493

Y. Z. N. Htwe, W. S. Chow, Y. Suda, A. A. Thant, and M. Mariatti, “Effect of electrolytes and sonication times on the formation of graphene using an electrochemical exfoliation process,” Applied Surface Science, vol. 469. pp. 951–961, Mar. 2019. https://doi.org/10.1016/j.apsusc.2018.11.029

K. K. De Silva, H. Hsin-Hui, S. Suzuki, and M. Yoshimura, “Ethanol-assisted restoration of graphitic structure with simultaneous thermal reduction of graphene oxide,” Jpn. J. Appl. Phys., vol. 57, no. 8S1, p. 08NB03, Jun. 2018. https://doi.org/10.7567/JJAP.57.08NB03

A. Ilnicka, M. Skorupska, P. Kamedulski, and J. P. Lukaszewicz, “Electro-exfoliation of graphite to graphene in an aqueous solution of inorganic salt and the stabilization of its sponge structure with poly(Furfuryl alcohol),” Nanomaterials, vol. 9, no. 7, p. 971, Jul. 2019. https://doi.org/10.3390/nano9070971

X. Mei, X. Meng, and F. Wu, “Hydrothermal method for the production of reduced graphene oxide,” Physica E: Low-Dimens Syst Nanostruct., vol. 68, pp. 81–86, Apr. 2015. https://doi.org/10.1016/j.physe.2014.12.011

R. Kumar et al., “Bulk synthesis of highly conducting graphene oxide with long range ordering,” RSC Adv., vol. 5, no. 45, pp. 35893–35898, Apr. 2015. https://doi.org/10.1039/c5ra01943e

K. Min-Sik, W. Jeong-Min, G. Dae-Myeong, J. R. Rani, and J. Jae-Hyung, “Effect of copper surface pre-treatment on the properties of CVD grown graphene,” AIP Adv., vol. 4, no. 12, Dec. 2014. https://doi.org/10.1063/1.4903369

J. R. Anasdass, P. Kannaiyan, R. Raghavachary, S. C. B. Gopinath, and Y. Chen, “Palladium nanoparticle-decorated reduced graphene oxide sheets synthesized using Ficus carica fruit extract: A catalyst for Suzuki cross-coupling reactions,” PLoS One, vol. 13, no. 2, p. e0193281, Feb. 2018. https://doi.org/10.1371/journal.pone.0193281

S. A. Khan et al., “Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin,” Compos. B. Eng., vol. 175, p. 107120, Oct. 2019. https://doi.org/10.1016/j.compositesb.2019.107120

T. Lling-Lling, O. Wee-Jun, C. Siang-Piao, and A. R. Mohamed, “Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide,” Nanoscale Res. Lett., vol. 8, no. 1, p. 465, Nov. 2013. https://doi.org/10.1186/1556-276X-8-465

K. K. Abbas, and A. M. H. A. Al-Ghaban, “Enhanced solar light photoreduction of innovative TiO2 nanospherical shell by reduced graphene oxide for removal silver ions from aqueous media,” Journal of Environmental Chemical Engineering, vol. 7, no. 3, p. 103168, Jun. 2019. https://doi.org/10.1016/j.jece.2019.103168

Y. Ren, L. Zhao, Y. Zou, L. Song, N. Dong, and J. Wang, “Effects of different TiO2 particle sizes on the microstructure and optical limiting properties of TiO2/reduced graphene oxide nanocomposites,” Nanomaterials, vol. 9, no. 5, p.730, May. 2019. https://doi.org/10.3390/nano9050730

M. P. Lavin-Lopez, A. Paton-Carrero, L. Sanchez-Silva, J. L. Valverde, and A. Romero, “Influence of the reduction strategy in the synthesis of reduced graphene oxide,” Advanced Powder Technology, vol. 28, no. 12, pp. 3195–3203, Dec. 2017. https://doi.org/10.1016/j.apt.2017.09.032

R. Larciprete, P. Lacovig, S. Gardonio, A. Baraldi, and S. Lizzit, “Atomic oxygen on graphite: Chemical characterization and thermal reduction,” Journal of Physical Chemistry C, vol. 116, no. 18, pp. 9900–9908, Apr. 2012. https://doi.org/10.1021/jp2098153

C. Botas et al., “Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation-reduction of graphite oxide,” Carbon N. Y, vol. 52, p. 476-485, Feb. 2013. https://doi.org/10.1016/j.carbon.2012.09.059

G. Zhang, M. Wen, S. Wang, J. Chen, and J. Wang, “Insights into thermal reduction of the oxidized graphite from the electro-oxidation processing of nuclear graphite matrix,” RSC Adv., vol. 8, no. 1, pp. 567–579, Jan. 2018. https://doi.org/10.1039/c7ra11578d

V. Z. Baldissarelli, T. De Souza, L. Andrade, L. F. C. De Oliveira, H. J. José, and R. D. F. P. Muniz Moreira, “Preparation and photocatalytic activity of TiO 2 -exfoliated graphite oxide composite using an ecofriendly graphite oxidation method,” Applied Surface Science, vol. 359, pp. 868–874, Dec. 2015. https://doi.org/10.1016/j.apsusc.2015.10.199

P. Yu, S. E. Lowe, G. P. Simon, and Y. L. Zhong, “Electrochemical exfoliation of graphite and production of functional graphene,” Curr. Opin. Colloid Interface Sci., vol. 20, no. 5–6, pp. 329–338, Oct-Dec. 2015. https://doi.org/10.1016/j.cocis.2015.10.007

L. Qiu et al., “Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives,” Chemistry - A European Journal, vol. 16, no. 35, pp. 10653–10658, Sep. 2010. https://doi.org/10.1002/chem.201001771

N. Keklikcioglu Cakmak, “The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids,” J. Therm. Anal. Calorim., vol. 139, no. 3, pp. 1895–1902, Dec. 2020. https://doi.org/10.1007/s10973-019-09096-6

H. Lee, J. I. Choi, J. Park, S. S. Jang, and S. W. Lee, “Role of anions on electrochemical exfoliation of graphite into graphene in aqueous acids,” Carbon N. Y., vol. 167, pp. 816–825, Oct. 2020. https://doi.org/10.1016/j.carbon.2020.06.044

M. Yousefi et al., “Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria,” Materials Science and Engineering C Mater. Biol. Appl., vol. 74. pp. 568–581, May. 2017. https://doi.org/10.1016/j.msec.2016.12.125

N. S. Ahmad, N. Abdullah, and F. M. Yasin, “Toxicity assessment of reduced graphene oxide and titanium dioxide nanomaterials on gram-positive and gram-negative bacteria under normal laboratory lighting condition,” Toxicology Reports, vol. 7, pp. 693–699, 2020. https://doi.org/10.1016/j.toxrep.2020.04.015

A. Khan, F. Ameen, F. Khan, A. Al-Arfaj, and B. Ahmed, “Fabrication and antibacterial activity of nanoenhanced conjugate of silver (I) oxide with graphene oxide,” Mater. Today Commun., vol. 25, p. 101667, Dec. 2020. https://doi.org/10.1016/j.mtcomm.2020.101667

H. Zheng et al., “Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety,” Science Bulletin, vol. 63, no. 2. pp. 133–142, Jan. 2018. https://doi.org/10.1016/j.scib.2017.12.012

C. Xie et al., “Elucidating the origin of the surface functionalization - dependent bacterial toxicity of graphene nanomaterials: Oxidative damage, physical disruption, and cell autolysis,” Science of the Total Environment, vol. 747, p. 141546, Dec. 2020. https://doi.org/10.1016/j.scitotenv.2020.141546

T. Zhang, and T. Pier-Luc, “Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation?,” iScience, vol. 23, no. 12, p. 101787, Dec. 2020. https://doi.org/10.1016/j.isci.2020.101787

H. Luo, H. Ao, M. Peng, F. Yao, Z. Yang, and Y. Wan, “Effect of highly dispersed graphene and graphene oxide in 3D nanofibrous bacterial cellulose scaffold on cell responses: A comparative study,” Mater. Chem. Phys., vol. 235, p. 121774, Sep. 2019. https://doi.org/10.1016/j.matchemphys.2019.121774

A. Raja C. et al., “Decoration of 1-D nano bioactive glass on reduced graphene oxide sheets: Strategies and in vitro bioactivity studies,” Materials Science and Engineering C Mater. Biol. Appl., vol. 90, pp. 85–94, Sep. 2018. https://doi.org/10.1016/j.msec.2018.04.040

O. N. Ruiz et al., “Graphene oxide: a nonspecific enhancer of cellular growth,” ACS Nano, vol. 5, no. 10, pp. 8100–8107, Sep. 2011. https://doi.org/10.1021/nn202699t

V. Scuderi et al., “Photocatalytic and antibacterial properties of titanium dioxide flat film,” Mater. Sci. Semicond. Process., vol. 42, pp. 32–35, Feb. 2016. https://doi.org/10.1016/j.mssp.2015.09.005

Y. H. Leung et al., “Toxicity of ZnO and TiO2 to Escherichia coli cells.,” Sci. Rep., vol. 6, p. 35243, Oct. 2016. https://doi.org/10.1038/srep35243

A. Wanag et al., “Antibacterial properties of TiO2 modified with reduced graphene oxide,” Ecotoxicology and Environmental Safety, vol. 147, pp. 788–793, Jan. 2018. https://doi.org/10.1016/j.ecoenv.2017.09.039

Cómo citar
[1]
G. Durango Giraldo*, J. C. Zapata-Hernández, C. Betancur Henao, J. F. Santa Marín, y R. Buitrago Sierra, «Evaluación de la actividad bactericida de GO electroquímico modificado con nanopartículas de TiO2», TecnoL., vol. 26, n.º 58, p. e2765, dic. 2023.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-12-29
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo

Algunos artículos similares: