Modelado de propiedades mecánicas de mezclas asfálticas espumadas recicladas mediante regresión no lineal y redes neuronales artificiales y clasificación de diferentes diseños utilizando el método TOPSIS

Palabras clave: redes neuronales artificiales, betún espumado, propiedades mecánicas, regresión no lineal, pavimento asfáltico reciclado, método TOPSIS

Resumen

Las mezclas de asfalto espumado, creadas utilizando pavimento asfáltico reciclado (RAP, por sus siglas en inglés) y betún espumado, ofrecen ahorros de energía, reducción del uso de materiales vírgenes y menores costos de transporte, combinando las características de pavimentos rígidos y flexibles. Este estudio evaluó el rendimiento mecánico de las mezclas de asfalto espumado con diferentes contenidos de betún (1–3 %) y contenidos de cemento (0–2 %) para identificar la combinación óptima para aplicaciones en pavimentos. Se realizaron pruebas de resistencia a la compresión uniaxial (UCS, por sus siglas en inglés), resistencia a la tracción indirecta (ITS, por sus siglas en inglés), módulo resiliente (RM, por sus siglas en inglés) y relación de resistencia a la tracción (TSR, por sus siglas en inglés) en condiciones de laboratorio. Para predecir los resultados se utilizó un modelo de regresión no lineal y una red neuronal artificial (ANN, por sus siglas en inglés). El modelo de ANN demostró una mayor precisión con errores de predicción significativamente menores en comparación con el modelo de regresión no lineal. Luego, se empleó el método de Técnica para el Orden de Preferencia por Similaridad a la Solución Ideal (TOPSIS) para seleccionar la combinación óptima de materiales. TOPSIS prioriza las mezclas con la distancia geométrica más corta a la solución ideal positiva (mejores valores para todos los atributos) y la distancia más larga de la solución ideal negativa. Los resultados mostraron que UCS y RM aumentaron a medida que el contenido de betún aumentaba del 1 % al 2 %, pero estas propiedades disminuyeron cuando el contenido de betún superó el 2 %. En contraste, ITS (seco y saturado) mostró una mejora continua con el aumento del contenido de betún del 1 % al 3 %. El análisis de TOPSIS identificó la mezcla con 3 % de betún y 2 % de cemento como la combinación óptima, logrando el mejor rendimiento general en las pruebas de UCS, ITS, RM y TSR. Este estudio destaca la utilidad de las mezclas de asfalto espumado para la construcción sostenible, demostrando que las predicciones de ANN y TOPSIS pueden guiar eficazmente la selección de materiales para lograr un rendimiento mecánico superior mientras se reduce el impacto ambiental.

Biografía del autor/a

Mehrdad Mirshekarian Babaki, Jemper Engineering Co, Irán

Jemper Engineering Co, Tehran-Irán, mhrdiut@gmail.com

Ali Pirhadi Tavandashti, University of Georgia, Estados Unidos

University of Georgia, Athens-United States of America, ali.piehadi@uga.edu

Referencias bibliográficas

K. Kuna, G. Airey, and N. Thom, “Mix Design Considerations of Foamed Bitumen Mixture with Reclaimed Asphalt Pavement Material,” Int. J. Pavement Eng., vol. 18, no. 10, pp. 902-915, Jan. 2016. https://doi.org/10.1080/10298436.2015.1126271

B. Marquis, D. Peabody, R. Mallick, and R. Soucie, “Determination of Structural Layer Coefficient for Roadway Recycling Using Foamed Asphalt,” Recycled Materials Resource Center, Instituto Politécnico de Worcester, Final Report, 2003. https://rmrc.wisc.edu/wp-content/uploads/2012/10/p26final.pdf

G. Martinez-Argulles, F. Giustozzi, M. Crispino, and G. W. Flintsch, “Investigating physical and rheological properties of foamed bitumen,” Construction and Building Materials, vol. 72, pp. 423-433, Dec. 2014. https://doi.org/10.1016/j.conbuildmat.2014.09.024

H. Gui-Ping, and W. Wing-Gun, “Laboratory study on permanent deformation of foamed asphalt mix incorporating reclaimed asphalt pavement materials,” Construction and Building Materials, vol. 21, no. 8, pp. 1809-1819, Aug. 2007. https://doi.org/10.1016/j.conbuildmat.2006.05.024

Z. Li, P. Hao, H. Liu, and J. Xu, “Effect of cement on the strength and microcosmic characteristics of cold recycled mixtures using foamed asphalt,” J. Clean. Prod., vol. 230, pp. 956–965, Sep. 2019. https://doi.org/10.1016/j.jclepro.2019.05.156

F. V. Guatimosim, K. L. Vascocelos, L. Liedi, and J. Kim, “Laboratory and field evaluation of cold recycling mixture with foamed asphalt,” Road Materials and Pavement Design, vol. 19, no. 2, pp. 385-399, Dec. 2016. https://doi.org/10.1080/14680629.2016.1261726

K. J. Jenkins, and D. C. Collings, “Mix design of bitumen-stabilised materials-South Africa and abroad,” Road Mater. Pavement, vol. 18, no. 2, pp. 331-349, Aug. 2016. https://doi.org/10.1080/14680629.2016.1213511

H. Gui-Ping, and W. Wing-Gun, “Effects of moisture on strength and permanent deformation of foamed asphalt mix incorporating RAP materials,” Construction and Building Materials, vol. 22, no. 1, pp. 30-40, Jan. 2008. https://doi.org/10.1016/j.conbuildmat.2006.06.033

B. Şimşek, and T. Uygunoğlu, “Multi-response optimization of polymer blended concrete: A TOPSIS based Taguchi application,” Constr. Build. Mater., vol. 117, pp. 251–262, Aug. 2016. https://doi.org/10.1016/j.conbuildmat.2016.05.027

Y. Kim, and H. “david” Lee, “Development of mix design procedure for cold in-place recycling with foamed asphalt,” J. Mater. Civ. Eng., vol. 18, no. 1, pp. 116–124, Feb. 2006. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:1(116)

M. F. Saleh, “Effect of aggregate gradation, mineral fillers, bitumen grade, and source on mechanical properties of foamed bitumen–stabilized mixes,” Transp. Res. Rec., vol. 1952, no. 1, pp. 90–100, Jan. 2006. https://doi.org/10.1177/0361198106195200110

A. Saleh, and L. Gáspár, “Advantages and limitations of using foamed bitumen,” Acta Tech. Jaurinensis, vol. 14, no. 3, pp. 300–314, Mar. 2021. https://doi.org/10.14513/actatechjaur.00587

P. Fu, D. Jones, J. T. Harvey, and S. A. Bukhari, “Laboratory test methods for foamed asphalt mix resilient modulus,” Road Mater. Pavement Des., vol. 10, no. 1, pp. 188–212, Sep. 2011. https://doi.org/10.1080/14680629.2009.9690187

T. Ma, H. Wang, Y. Zhao, X. Huang, and Y. Pi, “Strength Mechanism and Influence Factors for Cold Recycled Asphalt Mixture,” Adv. Mater. Sci. Eng., vol. 2015, p. 181853, Sep. 2015. https://doi.org/10.1155/2015/181853

G. Narendra Goud, “Laboratory and Field Evaluation of Recycled Cold Mixes,” M.S. thesis, National Institute of Technology Warangal, Warangal, India, 2006. https://acortar.link/E3QS5g

J.-Z. Xu and P.-W. Hao, “Study of aggregate gradations in foamed bitumen mixes,” Road Materials and Pavement Design, vol. 13, no. 4, pp. 660–677, Nov. 2012. https://doi.org/10.1080/14680629.2012.742627

P. Fu, D. Jones, J. T. Harvey, and F. A. Halles, “Investigation of the curing mechanism of foamed asphalt mixes based on micromechanics principles,” J. Mater. Civ. Eng., vol. 22, no. 1, pp. 29–38, May. 2010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000009

D. E. Newcomb et al., “Properties of foamed asphalt for warm mix asphalt applications,” Transportation Research Board, Washington, D.C., 2015. https://doi.org/10.17226/22145

A. Kavussi, and L. Hashemian, “Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes,” Int. J. Pavement Eng., vol. 13, no. 5, pp. 415–423, Jul. 2011. https://doi.org/10.1080/10298436.2011.597859

M. Iwanski, P. Buczynski, and G. Mazurek, "The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen," B. Pol. Acad. Sci. Tech., vol. 64, no. 4, pp. 763-773, 2016. https://doi.org/10.1515/bpasts-2016-0085

F. A. Halles, and G. Z. Thenoux, “Degree of influence of active fillers on properties of recycled mixes with foamed asphalt,” Transp. Res. Rec., vol. 2095, no. 1, pp. 127–135, Jan. 2009. https://doi.org/10.3141/2095-13

M. Iwański, and A. Chomicz-Kowalska, “Laboratory study on mechanical parameters of foamed bitumen mixtures in the cold recycling technology,” Procedia Eng., vol. 57, pp. 433–442, 2013. https://doi.org/10.1016/j.proeng.2013.04.056

H. Divandari, A. Modarres, S. M. Hosseini Aliabadi, and M. Rostami Enkas, “Presentation of a rutting model of asphalt mixes using indirect tensile strength and Marshall strength test results,” Transp. Infra. Eng., vol. 1, no. 2, pp. 41-54, Jul. 2015. https://doi.org/10.22075/JTIE.2014.163

A. Ameli, S. YoussefDost, and R. Babagoli, " Characteristics of Asphalt Mixtures Made with the Foam Bitumen Technology," Transp. Res., vol. 14, no. 2, pp. 321-334, 2017. https://www.trijournal.ir/article_50995.html

M. R. Keymanesh, H. Ziyari, A. Nasrollah Tabar, and N. Shahriari, “Potential Analysis of Microstructural Parameters and Indirect Tensile Strength in Evaluation of Rutting Performance of Hot Asphalt Mixtures,” Transp. Infra. Eng., vol. 3, no. 1, pp. 69-82, May. 2016. https://doi.org/10.22075/JTIE.2017.1762.1167

J. Little, and C. Moler. MATLAB. R2019B (2019). The MathWorks, Inc., Natick, Massachusetts, United States. Accessed: Apr. 25, 2024. [Online]. Available: https://la.mathworks.com/products/matlab/student.html

Cómo citar
[1]
M. Mirshekarian Babaki y A. Pirhadi Tavandashti, «Modelado de propiedades mecánicas de mezclas asfálticas espumadas recicladas mediante regresión no lineal y redes neuronales artificiales y clasificación de diferentes diseños utilizando el método TOPSIS», TecnoL., vol. 28, n.º 62, p. e3154, mar. 2025.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2025-03-05
Sección
Artículos de investigación
Crossref Cited-by logo
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas