Fotometría de llama, un método preciso, seguro y fiable para la determinación de sodio en matrices de pasabocas fritos a base de maíz

Palabras clave: determinación de precisión, curvas de calibración, aperitivos de maíz, fotometría de flama, contenido de sodio, validación del sistema

Resumen

En la industria alimentaria es crucial validar los métodos analíticos para el análisis de nutrientes y componentes en productos alimenticios procesados, especialmente, con la reciente inclusión del sistema de etiquetado frontal de alimentos. En este artículo se presenta una metodología novedosa para determinar los niveles de sodio en pasabocas fritos a base de maíz. Esta investigación tuvo como objetivo determinar la fiabilidad del método a la hora de proporcionar resultados precisos de forma consistente. La metodología consistió en una validación exhaustiva del método analítico de fotometría de llama para medir con precisión el contenido de sodio en pasabocas a base de maíz. Los resultados del equipo se linealizaron para el analito específico, y su precisión se determinó mediante curvas de calibración en cuatro puntos de control utilizando dos estándares de sodio. Un estándar era un control normalizado, y el segundo se preparó diluyendo directamente la matriz alimentaria de interés. Se determinaron los límites del equipo para la detección y cuantificación de sodio. La precisión se evaluó utilizando porcentajes experimentales de recuperación. Los resultados de la normalización del método se evaluaron durante 10 meses analizando 150 muestras de aperitivos a base de maíz y obteniendo datos de medición de las pruebas de sodio estable comparados con los datos indicados en el envase. Los resultados indicaron la precisión y linealidad del método mediante una curva de regresión lineal y un análisis de varianza, así como la homogeneidad y homocedasticidad aplicando el estadístico t y la prueba Q de Cochran. Finalmente, se concluye que el método proporciona resultados rápidos, seguros, fiables y precisos. Adicionalmente, se encontró que la muestra analizada cumple la normativa sobre alimentos bajos en sodio sin etiqueta de advertencia.

Biografía del autor/a

Jhojan Mauricio Madrid-Molina, Universidad de los Llanos, Colombia

Universidad de los Llanos, Meta-Colombia, jhojan.madrid@unillanos.edu.co

Bryan Stevens Mena-Delgado, Universidad de los Llanos, Colombia

Universidad de los Llanos, Meta-Colombia, bryan.mena@unillanos.edu.co

Leonardo Alexis Alonso Gómez, Universidad de los Llanos, Colombia

Universidad de los Llanos, Meta-Colombia, lalonso@unillanos.edu.co

Referencias bibliográficas

M. Bhupathyraaj, S. S. Rabia Al Salty, M. Al-Ghazali, and N. Halligudi, “Analysis of Sodium Levels in Different Brands of Edible Salts by Flame Photometer,” International Journal of Nutrition, Pharmacology, Neurological Diseases, vol. 14, no. 1, p. 72-79, Jan-Mar. 2024. https://doi.org/10.4103/ijnpnd.ijnpnd_67_23

F. Gao et al., “Reduction of Endothelial Nitric Oxide Increases the Adhesiveness of Constitutive Endothelial Membrane ICAM-1 through Src-Mediated Phosphorylation,” Front. Physiol., vol. 8, p. 1124, Jan. 2018. https://doi.org/10.3389/fphys.2017.01124

Z. Harun et al., “Salt reduction policy for out of home sectors: a supplementary document for the salt reduction strategy to prevent and control non-communicable diseases (NCDS) in Malaysia 2021-2025,” Health Res. Policy Syst., vol. 22, no. 1, p. 49, Apr. 2024. https://doi.org/10.1186/s12961-024-01124-8

D. Liu et al., “Sodium, potassium intake, and all-cause mortality: confusion and new findings,” BMC Public Health, vol. 24, no. 1, p. 180, Jan. 2024. https://doi.org/10.1186/s12889-023-17582-8

B. M. Popkin, D. R. Miles, L. S. Taillie, and E. K. Dunford, “A policy approach to identifying food and beverage products that are ultra-processed and high in added salt, sugar and saturated fat in the United States: a cross-sectional analysis of packaged foods,” Lancet Reg. Health Am., vol. 32, p. 100713, Apr. 2024. https://doi.org/10.1016/j.lana.2024.100713

T. Perez-Palacios, A. Salas, A. Muñoz, E.-R. Ocaña, and T. Antequera, “Sodium chloride determination in meat products: Comparison of the official titration-based method with atomic absorption spectrometry,” J. Food Compost. Anal., vol. 108, p. 104425, May. 2022. https://doi.org/10.1016/j.jfca.2022.104425

Z. Bao, Y. Tian, J. Gao, K. Da, and S. Lin, “Effect of partial substitution of sodium salt on the quality of salted quail eggs,” J. Food Biochem., vol. 45, no. 10, p. e13941, Sep. 2021. https://doi.org/10.1111/jfbc.13941

L. M. Bianchi, K. M. Phillips, R. C. McGinty, J. K. Ahuja, and P. R. Pehrsson, “Cooking parameters affect the sodium content of prepared pasta,” Food Chemistry, vol. 271, pp. 479-487, Jan. 2019. https://doi.org/10.1016/j.foodchem.2018.07.198

M. Sezey, and P. Adun, “Validation of Mohr titration method to determine salt in Olive and Olive brine,” J. Turk. Chem. Soc. Sect. Chem., vol. 6, no. 3, pp. 329–334, Oct. 2019. https://doi.org/10.18596/jotcsa.496563

G. D. Christian, P. K. Dasgupta, and K. A. Schug, “Precipitation Reactions and Titrations,” in Analytical Chemistry, 7th ed. Chichester, England: John Wiley & Sons, 2013. URL

M. A. Iannelli et al., “Differential phytotoxic effect of silver nitrate (AgNO3) and bifunctionalized silver nanoparticles (AgNPs-Cit-L-Cys) on Lemna plants (duckweeds),” Aquat. Toxicol., vol. 250, p. 106260, Sep. 2022. https://doi.org/10.1016/j.aquatox.2022.106260

C. G. Teran, S. Sura, P. Cabandugama, and C. Berson, “Silver nitrate ingestion: report of a case with an uneventful course and review of the literature,” Clin. Pract., vol. 1, no. 3, p. e43, Jul. 2011. https://doi.org/10.4081/cp.2011.e43

B. Zhou, J. Nichols, R. C. Playle, and C. M. Wood, “An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss),” Toxicol. Appl. Pharmacol., vol. 202, no. 1, pp. 25–37, Jan. 2005. https://doi.org/10.1016/j.taap.2004.06.003

M. A. Karabegov, “Flame photometers. Basic parameters and metrological support,” Meas. Tech., vol. 54, no. 6, pp. 735–742, Sep. 2011. https://doi.org/10.1007/s11018-011-9796-7

R. Herrmann, “The applications of flame photometry in biology and medicine,” in Analytical Flame Spectroscopy: Selected Topics, R. Mavrodineanu, Eds., London: Philips Technical Library, Palgrave, 1970, pp. 479-523. https://doi.org/10.1007/978-1-349-01008-0_9

P. Banerjee, and B. Prasad, “Determination of concentration of total sodium and potassium in surface and ground water using a flame photometer,” Appl. Water Sci., vol. 10, no. 5, p. 113, Apr. 2020. https://doi.org/10.1007/s13201-020-01188-1

E. A. Zauer, “Modern instrumentation and practical application of flame atomic emission spectrometry,” Chim. Techno Acta, vol. 11, no. 1, Mar. 2024. https://doi.org/10.15826/chimtech.2024.11.1.09

Kruss, “Flame photometry,” kruess.com. Accessed: Feb. 11, 2024. [Online]. Available: https://www.kruess.com/en/campus/flame-photometry/#dokumente

E. Lau, “5 - Preformulation Studies,” in Handbook of Modern Pharmaceutical Analysis, S. Ahuja, and S. Scypinski, Eds., New York, NY, USA: Elsevier Academic Press, 2001, pp. 173–233. https://doi.org/10.1016/S0149-6395(01)80007-6

Z. Witkiewicz, K. Jasek, and M. Grabka, “Semiconductor gas sensors for detecting chemical warfare agents and their simulants,” Sensors, vol. 23, no. 6, p. 3272, Mar. 2023. https://doi.org/10.3390/s23063272

A. Ibrahim Almohana, S. Fahad Almojil, A. Fahmi Alali, and K. Twfiq Almoalimi, “The elimination and extraction of organosulfur compounds from real water and soil samples using metal organic framework/graphene oxide as a novel and efficient nanocomposite,” Chemosphere, vol. 319, p. 137950, Apr. 2023. https://doi.org/10.1016/j.chemosphere.2023.137950

S. Mizutani, “Development of a method for measuring and visualizing the concentration of aerosol particles using flame photometry,” E3S Web Conf., vol. 396, p. 01111, Jun. 2023. https://doi.org/10.1051/e3sconf/202339601111

B. S. Martinez, A. P. De Oliveira, F. G. Pedro, J. C. De Oliveira, and R. Dalla Villa, “Determination of the Sodium Concentration in Brazilian Light and Non- Light Powdered Instant Soups by Flame Photometry,” Current Nutrition & Food Science, vol. 11, no. 2, pp. 131-135, May. 2015. https://doi.org/10.2174/1573401311666150416231533

D. B. Vahia de Abreu, K. Picard, M. R. S. Torres Klein, O. Marino Gadas, C. Richard, and M. I. Barreto Silva, “Soaking to Reduce Potassium and Phosphorus Content of Foods,” Journal of Renal Nutrition, vol. 33, no 1, pp. 165-171, Jan. 2023. https://doi.org/10.1053/j.jrn.2022.06.010

S. Ahmed, K. S. Ahmed, M. S. Hossain, M. S. Azam, M. Rahman, and M. Hoque, “Proximate composition and antioxidant activity of Syzygium cumini fruit grown at different regions in Bangladesh,” Food Res., vol. 4, no. 5, pp. 1693–1699, Oct. 2020. https://doi.org/10.26656/FR.2017.4(5).162

B. Tischer et al., “Infrared enthalpymetric methods: A new, fast and simple alternative for sodium determination in food sauces,” Food Chem., vol. 305, p. 125456, Feb. 2020. https://doi.org/10.1016/j.foodchem.2019.125456

N. M. Thuy, L. T. Hang, T. L. Triep, N. D. Tan, and N. V. Tai, “Development and nutritional analysis of healthy chicken soup supplemented with vegetables in Viet Nam,” Food Res., vol. 4, no. 1, pp. 113–120, Feb. 2020. https://doi.org/10.26656/fr.2017.4(1).248

N. K. Kortei, J. M. Suetor, G. Aboagye, C. O. Tettey, F. M. Kpodo, and E. K. Essuman, “Comparative study of the bioactive and chemical properties of three different Solanum spp. from Ghana,” Food Res., vol. 4, no. 5, pp. 1773–1784, Oct. 2020. https://doi.org/10.26656/fr.2017.4(5).010

J. Zhu, Y. Niu, and Z. Xiao, “Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS),” Food Chem., vol. 339, p. 128136, Mar. 2021. https://doi.org/10.1016/j.foodchem.2020.128136

E. Suhas, S. Shinkaruk, and A. Pons, “Optimizing the identification of thiols in red wines using new oak-wood accelerated reductive treatment,” Food Chem., vol. 437, no. Pt 1, p. 137859, Mar. 2024. https://doi.org/10.1016/j.foodchem.2023.137859

J. Bai, Y. Fan, L. Zhu, Y. Wang, and H. Hou, “Characteristic flavor of Antarctic krill (Euphausia superba) and white shrimp (Penaeus vannamei) induced by thermal treatment,” Food Chem., vol. 378, p. 132074, Jun. 2022. https://doi.org/10.1016/j.foodchem.2022.132074

Food Safety Authority of Ireland, Monitoring Sodium and Potassium in Processed Foods, Ireland: Food Safety Authority, 2022, pp. 1-56. https://www.fsai.ie/getmedia/6e0007f2-e7d2-430a-929e-d62c357119d0/monitoring-sodium-and-potassium-in-processed-foods.pdf?ext=.pdf

Association of Official Analytical Chemists, “Official methods of analysis of the aoac, K. Helrich, Ed., 15th ed. Arlington, USA: Association of Official Analytical Chemists, 1990, pp. 1-771. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf

E. Poitevin, M. Nicolas, L. Graveleau, J. Richoz, D. Andrey, and F. Monard, “Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial,” J. AOAC Int., vol. 92, no. 5, pp. 1484–1518, Sep. 2009. https://doi.org/10.1093/jaoac/92.5.1484

Protocols for Determination of Limits of Detection and Limits of Quantitation; Approved Guideline, NCCLS, 940, International Federation of Clinical Chemistry and Laboratory Medicine, Italy, 2004. https://webstore.ansi.org/preview-pages/CLSI/preview_EP17-A.pdf

W. G. Cochran, “The comparison of percentages in matched samples,” Biometrika, vol. 37, no. 3/4, pp. 256-266, Dec. 1950. https://doi.org/10.2307/2332378

Ofni Systems, “〈1225〉 validation of compendial procedures,” The United States Pharmacopeia, Rockvillem, Maryland, USA, 1225, 2007. Accessed: Feb. 11, 2024. [Online]. Available: https://www.ofnisystems.com/wp-content/uploads/2013/12/USP36_1225.pdf

I. Taverniers, M. De Loose, and E. Van Bockstaele, “Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance,” Trends Analyt. Chem., vol. 23, no. 8, pp. 535–552, Sep. 2004. https://doi.org/10.1016/j.trac.2004.04.001

J. Miller, and J. C. Miller, Estadistica y Quimiometria Para Quimica Analitica, 4th ed. Madrid, España: Pearson Educación, 2002, pp. 1-286. https://sceqa.wordpress.com/wp-content/uploads/2012/05/quimica-y-quimiometria.pdf

O. A. Montesinos López, A. Montesinos López, and J. Crossa, “Overfitting, model tuning, and evaluation of prediction performance,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction, Cham: Springer International Publishing, 2022, pp. 109–139. https://doi.org/10.1007/978-3-030-89010-0_4

A. Holst-Jensen, “Chapter 8 - Sampling, detection, identification and quantification of genetically modified organisms (GMOs),” in Food Toxicants Analysis, Y. Picó, Ed., Amsterdam: Elsevier, 2007, pp. 231-268. https://doi.org/10.1016/B978-044452843-8/50009-2

S. Mojtaba Moosavi, and S. Ghassabian, “Linearity of calibration curves for analytical methods: A review of criteria for assessment of method reliability,” in Calibration and Validation of Analytical Methods - A Sampling of Current Approaches, London, United Kingdom: InTech, 2018. https://doi.org/10.5772/intechopen.72932

Reglamento técnico que define los contenidos máximos de sodio de los alimentos procesados priorizados en el marco de la Estrategia Nacional de Reducción del Consumo de Sodio y se dictan otras disposiciones, resolución 2013 de 2020, Ministerio de Salud y Protección Social, Bogotá, Colombia, 2020. [Online]. Available: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=152201&dt=S

Cómo citar
[1]
J. M. Madrid-Molina, B. S. Mena-Delgado, y L. A. Alonso Gómez, «Fotometría de llama, un método preciso, seguro y fiable para la determinación de sodio en matrices de pasabocas fritos a base de maíz», TecnoL., vol. 28, n.º 62, p. e3176, abr. 2025.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2025-04-08
Sección
Artículos de investigación
Crossref Cited-by logo
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas