Evaluación de andamios microestructurados 3D con base en PCL/fibroína/nanopartículas de plata como soportes para células de piel
Resumen
La ingeniería de tejidos de la piel es un campo en el cual se utilizan células vivas y andamios para tratar defectos. Esta investigación tuvo como objetivo fabricar y evaluar andamios tridimensionales microestructurados a partir de policaprolactona (PCL), fibroína de seda y nanopartículas de plata (Ag-NP) mediante la técnica de wet-electrospinning. La metodología empleada consistió en extraer la fibroína de capullos de Bombyx Mori y se sintetizaron Ag-NP mediante reducción química, combinándolas con soluciones de PCL para crear andamios 3D. Estos se caracterizaron a través de microscopía electrónica de barrido (SEM), análisis térmico (TGA y DSC), espectroscopía FTIR y pruebas de ángulo de contacto al agua (WCA). Adicionalmente, se evaluó su citocompatibilidad mediante el ensayo MTT utilizando la línea celular de fibroblastos de ratón L929. Los resultados mostraron que la inclusión de fibroína y Ag-NP mejoró la hidrofília y la citocompatibilidad de los andamios cumpliendo con la norma ISO 10993-5:2009. La técnica de wet-electrospinning permitió obtener estructuras porosas con propiedades térmicas y morfológicas adecuadas para imitar la matriz extracelular. Finalmente, se concluye que los andamios desarrollados muestran una alta viabilidad para su uso como sustrato para la regeneración de tejidos cutáneos, subrayando la necesidad de realizar estudios in vivo que respalden su aplicación en entornos clínicos.
Referencias bibliográficas
T. Weng et al., “3D bioprinting for skin tissue engineering: Current status and perspectives,” J. Tissue Eng., vol. 12, Jul. 2021. https://doi.org/10.1177/20417314211028574
V. Choudhary, M. Choudhary, and W. B. Bollag, “Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process,” Int. J. Mol. Sci., vol. 25, no. 7, p. 3790, Mar. 2024. https://doi.org/10.3390/IJMS25073790
A. S. Carlin, “Essentials of wound care: assessing and managing impaired skin integrity,” Nurs. Stand., vol. 37, no. 10, pp. 69–74, Oct. 2022. https://doi.org/10.7748/NS.2022.E11964
F. Afghah et al., “3D printing of silver-doped polycaprolactone-poly (propylene succinate) composite scaffolds for skin tissue engineering,” Biomed. Mater., vol. 15, no. 3, p. 035015, May. 2020. https://doi.org/10.1088/1748-605X/ab7417
M. L. Mejía Suaza, Y. Hurtado Henao, and M. E. Moncada Acevedo, “Wet Electrospinning and its Applications: A Review,” TecnoL., vol. 25, no. 54, p. e2223, Jun. 2022. https://doi.org/10.22430/22565337.2223
N. Bakhtiary, M. Pezeshki-Modaress, and N. Najmoddin, “Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation,” Chem. Eng. Sci., vol. 264, p. 118144, Dec. 2022. https://doi.org/10.1016/J.CES.2022.118144
M. Shahverdi, S. Seifi, A. Akbari, K. Mohammadi, A. Shamloo, and M. Reza Movahhedy, “Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application,” Sci. Rep., vol. 12, no. 1, p. 19935, Dec. 2022. https://doi.org/10.1038/s41598-022-24275-6
C. Jiang, K. Wang, Y. Liu, C. Zhang, and B. Wang, “Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering,” J. Mech. Behav. Biomed. Mater., vol. 119, p. 104499, Jul. 2021. https://doi.org/10.1016/j.jmbbm.2021.104499
X. Jing, H. Li, H.-Y. Mi, Y.-J. Liu, and Y.-M. Tan, “Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds,” Chem. Eng. J., vol. 372, pp. 785–795, Sep. 2019. https://doi.org/10.1016/j.cej.2019.04.194
M. Zhang, H. Lin, Y. Wang, G. Yang, H. Zhao, and D. Sun, “Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles,” Appl. Surf. Sci., vol. 414, pp. 52–62, Aug. 2017. https://doi.org/10.1016/j.apsusc.2017.04.052
V. Korniienko et al., “Functional and biological characterization of chitosan electrospun nanofibrous membrane nucleated with silver nanoparticles,” Appl. Nanosci., vol. 12, no. 4, pp. 1061–1070, Apr. 2022. https://doi.org/10.1007/S13204-021-01808-5
J. Yin, Y. Fang, L. Xu, and A. Ahmed, “High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering,” Int. J. Biol. Macromol., vol. 183, pp. 1210–1221, Jul. 2021. https://doi.org/10.1016/J.IJBIOMAC.2021.05.026
K. Yan et al., “3D-bioprinted silk fibroin-hydroxypropyl cellulose methacrylate porous scaffold with optimized performance for repairing articular cartilage defects,” Mater. Des., vol. 225, p. 111531, Jan. 2023. https://doi.org/10.1016/J.MATDES.2022.111531
J. Sik Lim et al., “Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold,” Biopolymers, vol. 97, no. 5, pp. 265–275, May. 2012. https://doi.org/10.1002/bip.22016
M. Peifen et al., “New skin tissue engineering scaffold with sulfated silk fibroin/chitosan/hydroxyapatite and its application,” Biochem. Biophys. Res. Commun., vol. 640, pp. 117–124, Jan. 2023. https://doi.org/10.1016/J.BBRC.2022.11.086
E. Echeverri Correa, D. O. Grajales Lopera, S. Gutiérrez Restrepo, and C. P. Ossa Orozco, “Effective sericin¬fibroin separation from Bombyx mori silkworms fibers and low-cost salt removal from fibroin solution Separación de sericina/fibroína de seda del Bombyx mori y remoción asequible de sales,” Rev. Fac. Ing. Univ. Antioquia, no. 94, pp. 97-101, Oct. 2020. http://hdl.handle.net/10495/24955
G. A. Cuervo-Osorio, M. Escobar-Jaramillo, and C. P. Ossa-Orozco, “Diseño factorial 2k para la optimización de la síntesis de nanopartículas de plata para su aplicación en biomateriales,” Rev. ION, vol. 33, no. 1, pp. 17–32, Jun. 2020. https://doi.org/10.18273/revion.v33n1-2020002
H. Urena-Saborio, G. Rodríguez, S. Madrigal-Carballo, and S. Gunasekaran, “Characterization and applications of silver nanoparticles-decorated electrospun nanofibers loaded with polyphenolic extract from rambutan (Nepelium lappaceum),” Materialia, vol. 11, p. 100687, Jun. 2020. https://doi.org/10.1016/j.mtla.2020.100687
S. Patil, and N. Singh, “Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation,” Colloids Surf. B Biointerfaces, vol. 176, pp. 150–155, Apr. 2019. https://doi.org/10.1016/j.colsurfb.2018.12.067
J. P. Gallo Ramírez, and C. P. Ossa Orozco, “Fabricación y caracterización de nanopartículas de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. Des., vol. 37, no. 1, pp. 88–104, Jan. 2019. https://doi.org/10.14482/inde.37.1.6201
S. Mohammadzadehmoghadam, and Y. Dong, “Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor,” Front. Mater., vol. 6, May. 2019. https://doi.org/10.3389/fmats.2019.00091
C. S. Shivananda, B. Lakshmeesha Rao, and Sangappa, “Structural, thermal and electrical properties of silk fibroin–silver nanoparticles composite films,” J. Mater. Sci. Mater. Electron., vol. 31, no. 1, pp. 41–51, Jan. 2020. https://doi.org/10.1007/s10854-019-00786-3
M. Buitrago-Vásquez, and C. P. Ossa-Orozco, “Degradation, water uptake, injectability and mechanical strength of injectable bone substitutes composed of silk fibroin and hydroxyapatite nanorods,” Rev. Fac. Ingen., vol. 27, no. 48, pp. 49–60, May. 2018. https://doi.org/10.19053/01211129.v27.n48.2018.8072
H. Alissa Alam, A. Deniz Dalgic, A. Tezcaner, C. Ozen, and D. Keskin, “A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering,” Int. J. Polymeric Mater. Polymeric Biomater., vol. 69, no. 6, pp. 339–350, Mar. 2019. https://doi.org/10.1080/00914037.2019.1581198
Y. Eun Choe, and G. Hyung Kim, “A PCL/cellulose coil-shaped scaffold via a modified electrohydrodynamic jetting process,” Virtual Phys. Prototyp., vol. 15, no. 4, pp. 403–416, Aug. 2020. https://doi.org/10.1080/17452759.2020.1808269
B. Cinici, S. Yaba, M. Kurt, H. C. Yalcin, L. Duta, and O. Gunduz, “Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications,” Biomimetics, vol. 9, no. 7, p. 409, Jul. 2024. https://doi.org/10.3390/BIOMIMETICS9070409
M. Tominac Trcin et al., “Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells,” Polymers, vol. 12, no. 8, p. 1758, Aug. 2020. https://doi.org/10.3390/POLYM12081758
Sigma-Aldrich, “Physical Properties of Solvent,” sigmaaldrich.com. Accessed: May 29, 2025. [Online]. Available: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/614/456/labbasics_pg144.pdf?msockid=38c0c889d925620f3c0bdd0ad88a63df
Z. Chen et al., “Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds,” Polymers, vol. 14, no. 16, p. 3404, Aug. 2022. https://doi.org/10.3390/POLYM14163404
B. Maharjan et al., “In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 114, p. 111056, Sep. 2020. https://doi.org/10.1016/j.msec.2020.111056
E. Correa, M. E. Moncada, and V. H. Zapata, “Electrical characterization of an ionic conductivity polymer electrolyte based on polycaprolactone and silver nitrate for medical applications,” Mater. Lett., vol. 205, pp. 155–157, Oct. 2017. https://doi.org/10.1016/j.matlet.2017.06.046
T. De Paula de Lima Lima et al., “Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests,” Polymers, vol. 15, no. 22, p. 4403, Nov. 2023. https://doi.org/10.3390/POLYM15224403
B. Caglayan, and G. Basal, “Electrospun Polycaprolactone / Silk Fibroin Nanofibers Loaded With Curcumin for Wound Dressing Applications,” Digest J. Nanomater. Biostr., vol. 15, no. 4, pp. 1165–1173, Oct-Dec. 2020. https://doi.org/10.15251/DJNB.2020.154.1165
M. Rafiei, E. Jooybar, M. J. Abdekhodaie, and M. Alvi, “Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 113, p. 110913, Aug. 2020. https://doi.org/10.1016/J.MSEC.2020.110913
Descargas
Derechos de autor 2025 TecnoLógicas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
| Estadísticas de artículo | |
|---|---|
| Vistas de resúmenes | |
| Vistas de PDF | |
| Descargas de PDF | |
| Vistas de HTML | |
| Otras vistas | |
Datos de los fondos
-
Instituto Tecnológico Metropolitano
Números de la subvención P20209





