Selección de características 2D en representaciones tiempo frecuencia para la detección de soplos cardíacos

  • Juan D. Martínez-Vargas Universidad Nacional de Colombia Sede Manizales
  • Luis D. Avendaño-Valencia Universidad Nacional de Colombia Sede Manizales
  • Germán Castellanos-Domínguez Universidad Nacional de Colombia Sede Manizales
Keywords: Relevance analysis, feature selection, time-frequency representations

Abstract

In this paper is proposed a methodology for dimensionality reduction of time-frequency representations (TFRs) aimed to nonstationary biosignal classification that deals directly with large quantity of irrelevant and redundant data, combining a stage of feature selection with a stage of dimensionality reduction by linear decomposition methods extended to bidimensional data. The methodology is tested on a set of parametric TFRs computed from a phonocardiographic signal database (PCG) for detection of heart murmurs. Results show an improvement compared with other methodologies that do not account for irrelevant and redundant data in these representations and demonstrate that the use of bidimensional linear decomposition methods adequately reduce redundancy on TFRs, obtaining a new feature set of lower dimension than the original dataset.

Author Biographies

Juan D. Martínez-Vargas, Universidad Nacional de Colombia Sede Manizales
Grupo de Control y Procesamiento Digital de señales, Universidad Nacional de Colombia Sede Manizales
Luis D. Avendaño-Valencia, Universidad Nacional de Colombia Sede Manizales
Grupo de Control y Procesamiento Digital de señales, Universidad Nacional de Colombia Sede Manizales
Germán Castellanos-Domínguez, Universidad Nacional de Colombia Sede Manizales
Grupo de Control y Procesamiento Digital de s
How to Cite
Martínez-Vargas, J. D., Avendaño-Valencia, L. D., & Castellanos-Domínguez, G. (2011). Selección de características 2D en representaciones tiempo frecuencia para la detección de soplos cardíacos. TecnoLógicas, (26), 47-70. https://doi.org/10.22430/22565337.34

Downloads

Download data is not yet available.
Published
2011-06-21
Section
Articles

Most read articles by the same author(s)