Planeación de la expansión de la red de transmisión considerando índices nodales ponderados de alivio de carga

  • Sergio D. Saldarriaga-Zuluaga Institución Universitaria Pascual Bravo
  • Jesús M. López-Lezama Universidad de Antioquia
  • Fernando Villada-Duque Universidad de Antioquia
Palabras clave: Algoritmos genéticos, restricciones de seguridad, planeamiento de la expansión de la transmisión

Resumen

En este artículo se presenta un modelo y método de solución para el problema de la expansión de la red de transmisión, que integra restricciones de seguridad dadas a través de los índices nodales ponderados de alivio de carga en transmisión. Estos índices integran factores de inyección y distribución de potencia que permiten estimar la severidad de sobrecargas en condiciones normales y bajo contingencias simples. Adicionalmente, se ha considerado la inclusión de generación a pequeña escala, como complementaria a las soluciones del problema de expansión de la red de transmisión. El modelo propuesto es solucionado mediante la metaheurística NSGA-II (Non-dominated Sorting Genetic Algorithm II), permitiendo encontrar un conjunto de soluciones que representan un compromiso entre el costo del plan de expansión y su nivel de seguridad. Se encontró que la inclusión de generación a pequeña escala en nodos estratégicos permite reducir los costos de los planes de expansión y aumenta sus niveles de seguridad ante contingencias simples.

Biografía del autor/a

Sergio D. Saldarriaga-Zuluaga, Institución Universitaria Pascual Bravo

MSc. in Engineering, Facultad de Ingeniería

Jesús M. López-Lezama, Universidad de Antioquia

PhD. in Electrical Engineering, Departamento de Ingeniería Eléctrica

Fernando Villada-Duque, Universidad de Antioquia

PhD. in Electrical Engineering , Departamento de Ingeniería Eléctrica

Referencias bibliográficas

[1] X. Han, L. Zhao, J. Wen, X. Ai, J. Liu, and D. Yang, “Transmission network expansion planning considering the generators’ contribution to uncertainty accommodation,” CSEE J. Power Energy Syst., vol. 3, no. 4, pp. 450–460, 2017.
[2] A. H. Domínguez, A. H. Escobar, and R. A. Gallego, “An MILP model for the static transmission expansion planning problem including HVAC/HVDC links, security constraints and power losses with a reduced search space,” Electr. Power Syst. Res., vol. 143, pp. 611–623, Feb. 2017.
[3] S. Lumbreras and A. Ramos, “The new challenges to transmission expansion planning. Survey of recent practice and literature review,” Electr. Power Syst. Res., vol. 134, pp. 19–29, May 2016.
[4] A. Monticelli, A. Santos, M. F. Pereira, S. Cunha, B. Parker, and J. G. Praca, “Interactive Transmission Network Planning Using a Least-Effort Criterion,” IEEE Trans. Power Appar. Syst., vol. PAS-101, no. 10, pp. 3919–3925, Oct. 1982.
[5] A. H. Escobar, R. A. Gallego, and R. Romero, “Multistage and Coordinated Planning of the Expansion of Transmission Systems,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 735–744, May 2004.
[6] J. A. López-López, D. A. Tejada-Arango, and J. M. López-Lezama, “Planeamiento AC de la expansión de la red de transmisión considerando repotenciación de circuitos y ubicación de capacitores,” TecnoLógicas, vol. 19, no. 37, pp. 61–77, 2016.
[7] D. Tejada, J. M. López-Lezama, M. J. Rider, and G. Vinasco, “Transmission network expansion planning considering repowering and reconfiguration,” Int. J. Electr. Power Energy Syst., vol. 69, pp. 213–221, Jul. 2015.
[8] G. Vinasco, D. Tejada, E. F. Da Silva, and M. J. Rider, “Transmission network expansion planning for the Colombian electrical system: Connecting the Ituango hydroelectric power plant,” Electr. Power Syst. Res., vol. 110, pp. 94–103, May 2014.
[9] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “State-of-the-art of transmission expansion planning: Comprehensive review,” Renew. Sustain. Energy Rev., vol. 23, pp. 312–319, Jul. 2013.
[10] G. Latorre, R. D. Cruz, J. M. Areiza, and A. Villegas, “Classification of publications and models on transmission expansion planning,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 938–946, May 2003.
[11] J. H. Zhao, J. Foster, Z. Y. Dong, and K. P. Wong, “Flexible Transmission Network Planning Considering Distributed Generation Impacts,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1434–1443, Aug. 2011.
[12] O. Ziaee, O. Alizadeh-Mousavi, and F. F. Choobineh, “Co-Optimization of Transmission Expansion Planning and TCSC Placement Considering the Correlation Between Wind and Demand Scenarios,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 206–215, Jan. 2018.
[13] J. Qiu, J. Zhao, D. Wang, and Z. Y. Dong, “Decomposition-based approach to risk-averse transmission expansion planning considering wind power integration,” IET Gener. Transm. Distrib., vol. 11, no. 14, pp. 3458–3466, Sep. 2017.
[14] E. Sauma, C. Muñoz, J. Aguado, J. Contreras, and S. D. La Torre, “Impact of high wind power penetration on transmission network expansion planning,” IET Gener. Transm. Distrib., vol. 6, no. 12, pp. 1281–1291, Dec. 2012.
[15] C. A. Correa, R. Bolanos, A. Sanchez, A. Garces, and A. Molina, “Multiobjective transmission planning with security constraints,” in Eurocon 2013, 2013, pp. 1215–1221.
[16] E. B. Obio and J. Mutale, “A comparative analysis of energy storage and N-1 network security in transmission expansion planning,” in 2015 50th International Universities Power Engineering Conference (UPEC), 2015, pp. 1–6.
[17] M. Majidi-Qadikolai and R. Baldick, “Integration of Contingency Analysis With Systematic Transmission Capacity Expansion Planning: ERCOT Case Study,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2234–2245, May 2016.
[18] O. Alizadeh-Mousavi and M. Zima-Bočkarjova, “Efficient Benders cuts for transmission expansion planning,” Electr. Power Syst. Res., vol. 131, pp. 275–284, Feb. 2016.
[19] H. Zhang, V. Vittal, G. T. Heydt, and J. Quintero, “A Mixed-Integer Linear Programming Approach for Multi-Stage Security-Constrained Transmission Expansion Planning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125–1133, May 2012.
[20] A. M. Leite da Silva, M. R. Freire, and L. M. Honório, “Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms,” Electr. Power Syst. Res., vol. 133, pp. 173–181, Apr. 2016.
[21] A. M. L. da Silva, F. A. de Assis, L. A. F. Manso, M. R. Freire, and S. A. Flavio, “Constructive metaheuristics applied to transmission expansion planning with security constraints,” in 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), 2017, pp. 1–7.
[22] A. M. Leite da Silva, L. S. Rezende, L. M. Honório, and L. A. F. Manso, “Performance comparison of metaheuristics to solve the multi-stage transmission expansion planning problem,” IET Gener. Transm. Distrib., vol. 5, no. 3, p. 360, 2011.
[23] L. A. Gallego, L. P. Garcés, M. Rahmani, and R. A. Romero, “High-performance hybrid genetic algorithm to solve transmission network expansion planning,” IET Gener. Transm. Distrib., vol. 11, no. 5, pp. 1111–1118, Mar. 2017.
[24] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. S. Fadali, and M. Moeini-Aghtaie, “A Multi-Objective Transmission Expansion Planning Framework in Deregulated Power Systems With Wind Generation,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3003–3011, Nov. 2014.
[25] Yuan Hu, Zhaohong Bie, Gengfeng Li, and Tao Ding, “Application of improved point estimate method on multi-objective transmission network expansion planning,” in 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2016, pp. 1038–1042.
[26] S. Grijalva and A. M. Visnesky, “The Effect of Generation on Network Security: Spatial Representation, Metrics, and Policy,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1388–1395, Aug. 2006.
[27] T. Guler, G. Gross, and L. Minghai, “Generalized Line Outage Distribution Factors,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 879–881, May 2007.
[28] Y. C. Chen, S. V Dhople, A. D. Dominguez-Garcia, and P. W. Sauer, “Generalized Injection Shift Factors,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2071–2080, Sep. 2017.
[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.
[30] L. F. Rojas-Ríos, J. M. López-Lezama, and N. Muñoz-Galeano, “Asignación Óptima de Presupuesto para Mejoramiento de la Calidad del Servicio en Sistemas de Distribución usando Algoritmo Genético No-Dominado II (NSGA-II) y un Algoritmo Memético,” Inf. tecnológica, vol. 27, no. 1, pp. 115–126, 2016.
[31] F. Ugranlı and E. Karatepe, “Multi-objective transmission expansion planning considering minimization of curtailed wind energy,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 348–356, Feb. 2015.
[32] C. A. Correa Florez, R. A. Bolaños Ocampo, and A. H. Escobar Zuluaga, “Multi-objective transmission expansion planning considering multiple generation scenarios,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 398–409, Nov. 2014.
[33] L. Garver, “Transmission Network Estimation Using Linear Programming,” IEEE Trans. Power Appar. Syst., vol. PAS-89, no. 7, pp. 1688–1697, Sep. 1970.
[34] C. Grigg et al., “The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 1010–1020, 1999.
[35] R. Romero, C. Rocha, J. R. S. Mantovani, and I. G. Sanchez, “Constructive heuristic algorithm for the DC model in network transmission expansion planning,” IEE Proc. - Gener. Transm. Distrib., vol. 152, no. 2, pp. 277–282, 2005.
[36] B. Alizadeh and S. Jadid, “Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming,” IET Gener. Transm. Distrib., vol. 5, no. 9, pp. 948–960, 2011.
[37] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 12–19, Feb. 2011.
Cómo citar
[1]
S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, y F. Villada-Duque, «Planeación de la expansión de la red de transmisión considerando índices nodales ponderados de alivio de carga», TecnoL., vol. 21, n.º 42, pp. 31–50, may 2018.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2018-05-14
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo