Behaviour of surge arresters against lightning-induced voltages on distribution lines over mountainous zones

Keywords: Lightning-induced voltages, non-flat terrains, surge arresters, Finite difference time domain method (FDTD), distribution lines

Abstract

This paper analyzes how the location of surge arresters on distribution lines over mountainous zones affect the lightning-induced voltages in this kind of lines. Four configurations of non-flat terrains representative of the Colombian topography were chosen. The inclusion of the terrain, the return stroke channel, the distribution line and the calculation of lightning-induced voltages were done by means of the finite difference time domain method in Cartesian coordinates in three dimensions (3D-FDTD). It was found that the induced voltages in non-flat terrains are between 2 and 5 times the obtained for flat terrain. For the case of the simulated terrains A, C and D, the induced voltages surpass the normal operating thresholds of the surge arresters. It supposes that surge arresters placed on distribution lines in mountainous zones have additional strengths to those existing in flat terrains. Nevertheless, there is a configuration (B) where the threshold values are not exceeded.

Author Biographies

Edison Soto, *, Universidad Industrial de Santander, Colombia

PhD en Ingeniería, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga-Colombia, easotor@uis.edu.co
*Corresponding author

Daniel Martínez, Universidad Industrial de Santander, Colombia

Ingeniero Eléctrico, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga-Colombia, daalmago21@gmail.com

Diego Verdugo, Universidad Industrial de Santander, Colombia

Ingeniero Eléctrico, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga-Colombia, diegover92@hotmail.com

References

M. Paolone, F. Rachidi-Haeri, and C. A. Nucci, “IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines,” IEEE Std 1410-2004 (Revision IEEE Std 1410-1997), 2010.

A. Borghetti, C. A. Nucci, and M. Paolone, “An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and Its Comparison with the IEEE Std. 1410 Method,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 684–692, Jan. 2007. https://doi.org/10.1109/TPWRD.2006.881463.

C. A. Nucci, F. Rachidi, M. V. Ianoz, and C. Mazzetti, “Lightning-induced voltages on overhead lines,” IEEE Trans. Electromagn. Compat., vol. 35, no. 1, pp. 75–86, 1993. https://doi.org/10.1109/15.249398.

E. Pérez and H. Torres, “Advances on modeling and experimentation of lightning induced voltages on distribution lines,” 2006.

M. Paolone et al., “Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 532–547, Aug. 2009. https://doi.org/10.1109/TEMC.2009.2025958.

E. Soto and E. Pérez, “Implementation of an analytical formulation for LEMP to assess the lightning performance of a distribution line,” TecnoLógicas, vol. 21, no. 42, pp. 51–62, May. 2018. https://doi.org/10.22430/22565337.778.

E. Soto, E. Perez, and J. Herrera, “Electromagnetic Field Due to Lightning Striking on Top of a Cone-Shaped Mountain Using the FDTD,” IEEE Trans. Electromagn. Compat., vol. 56, no. 5, pp. 1112–1120, Oct. 2014. https://doi.org/10.1109/TEMC.2014.2301138.

D. Li et al., “On Lightning Electromagnetic Field Propagation Along an Irregular Terrain,” IEEE Trans. Electromagn. Compat., vol. 58, no. 1, pp. 161–171, Feb. 2016. https://doi.org/10.1109/TEMC.2015.2483018.

E. Soto, E. Perez, and C. Younes, “Influence of non-flat terrain on lightning induced voltages on distribution networks,” Electr. Power Syst. Res., vol. 113, pp. 115–120, Aug. 2014. https://doi.org/10.1016/j.epsr.2014.02.034.

E. Soto, “Lightning induced voltages study on overhead distribution networks placed over non-flat at terrains,” Universidad Nacional de Colombia, 2014.

R. E. J. Mejía, “Lightning induced voltages on overhead lines above non-uniform and non- homogeneous ground,” Universidad Nacional de Colombia, 2014.

S. Yokoyama, “Distribution Surge Arrester Behavior Due to Lightning Induced Voltages,” IEEE Trans. Power Deliv., vol. 1, no. 1, pp. 171–178, 1986. https://doi.org/10.1109/TPWRD.1986.4307904.

M. Paolone, C. A. Nucci, E. Petrache, and F. Rachidi, “Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters: Modeling and Experimental Validation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 423–431, Jan. 2004. https://doi.org/10.1109/TPWRD.2003.820196.

M. A. Uman, D. K. McLain, and E. P. Krider, “The electromagnetic radiation from a finite antenna,” Am. J. Phys., vol. 43, no. 1, pp. 33–38, Jan. 1975. https://doi.org/10.1119/1.10027.

K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell’s equations,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp. 354–363, Mar. 1997. https://doi.org/10.1109/8.558651.

A. Z. Elsherbeni and V. Demir, The Finite-Difference Time-Domain in Electromagnetics, Har/Cdr. Institution of Engineering and Technology, 2015. https://doi.org/10.1049/SBEW514E.

F. Heidler, J. M. Cvetic, and B. V. Stanic, “Calculation of lightning current parameters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 399–404, Apr. 1999. https://doi.org/10.1109/61.754080.

T. Noda and S. Yokoyama, “Thin wire representation in finite difference time domain surge simulation,” IEEE Trans. Power Deliv., vol. 17, no. 3, pp. 840–847, Jul.2002. https://doi.org/10.1109/TPWRD.2002.1022813.

G. Lin, S. Lu, and J. Liu, “Transmitting boundary for transient analysis of wave propagation in layered media formulated based on acceleration unit-impulse response,” Soil Dyn. Earthq. Eng., vol. 90, no. 10, pp. 494–509, Nov. 2016. https://doi.org/10.1016/j.soildyn.2016.09.021.

A. Tatematsu and T. Noda, “Three-Dimensional FDTD Calculation of Lightning-Induced Voltages on a Multiphase Distribution Line With the Lightning Arresters and an Overhead Shielding Wire,” IEEE Trans. Electromagn. Compat., vol. 56, no. 1, pp. 159–167, Feb. 2014. https://doi.org/10.1109/TEMC.2013.2272652.

SIEMENS, “Descargadores de sobretensión de media tensión 3EK4 con envolvente de Silicona,” Siemens AG, Erlangen, Alemania, 2010.

G. E. publicas de Medellín, “Especificaciones técnicas para descargadores de sobretensiones DPS en media tensión,” 2015.

E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos,” pp. 1–8, 2010.

E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos. Avances en Ingeniería Eléctrica,” Av. en Ing. Eléctrica, vol. 4, no. 1, pp. 1–8, 2013.

How to Cite
[1]
E. Soto, D. Martínez, and D. Verdugo, “Behaviour of surge arresters against lightning-induced voltages on distribution lines over mountainous zones”, TecnoL., vol. 22, no. 45, pp. 155–171, May 2019.

Downloads

Download data is not yet available.
Published
2019-05-15
Section
Research Papers

Altmetric

Crossref Cited-by logo