Grinding methods effects on the synthesis of Potassium-Sodium Niobate powders by oxide mixing

Keywords: Potassium-sodium Niobate, oxide mixture, lead-free

Abstract

Piezoelectric materials are widely used in electronic devices and, traditionally, various lead-based materials have been implemented in such applications. However, because of the damage caused by lead, other materials with similar characteristics that do not cause a negative impact on human health and the environment have been developed. A material with those characteristics is potassium-sodium niobite K0.5Na0.5 Nbo3. In this study, we investigate the thermogravimetric, structural, and microstructural properties of powders of such system obtained through oxide mixing with the aim of establishing the effect and efficiency of grinding (using a horizontal and a planetary ball mill grinder) on the production of the final material. It was determined that horizontal grinding and calcination at 900°C create the optimal conditions for obtaining K0.5Na0.5 Nbo3 powders, by oxide mixing, with the adequate structure and microstructure to continue the densification and/or doping processes.

Author Biographies

María C. Quintero, Universidad de Antioquia, Colombia

Ing. Química, Grupo de Estado sólido, Instituto de física, Universidad de Antioquia, Medellín-Colombia, mariaclara3010@gmail.com

Miryam Rincón, Universidad de Nacional de Colombia, Colombia

PhD. en Ciencia, Departamento de Física, Universidad de Nacional de Colombia, Bogotá-Colombia, mrinconj@unal.edu.co

Jorge M. Osorio-Guillén, Universidad de Antioquia, Colombia

PhD. en Física, Grupo de Estado sólido, Instituto de física, Universidad de Antioquia, Medellín-Colombia, mario.osorio@udea.edu.co

Diana López, Universidad de Antioquia, Colombia

PhD. en Química, Química de Recursos Energéticos y Medio Ambiente, Universidad de Antioquia, Medellín-Colombia, dplope@gmail.com

Fernando A. Londoño*, Universidad de Antioquia, Colombia

PhD. en Ciencias, Grupo de Instrumentación científica y microelectrónica, Universidad de Antioquia, Medellín-Colombia, fernandoa.londono@udea.edu.co

References

J.-F. Li, K. Wang, F.-Y. Zhu, L.-Q. Cheng, and F.-Z. Yao, “(K,Na)NbO 3 -Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges,” J. Am. Ceram. Soc., vol. 96, no. 12, pp. 3677–3696, Dec. 2013. https://doi.org/10.1111/jace.12715

G. H. Khorrami, A. Kompany, and A. Khorsand Zak, “Structural and optical properties of (K,Na)NbO3 nanoparticles synthesized by a modified sol–gel method using starch media,” Adv. Powder Technol., vol. 26, no. 1, pp. 113–118, Jan. 2015. https://doi.org/10.1016/j.apt.2014.08.013

T. R. Shrout and S. J. Zhang, “Lead-free piezoelectric ceramics: Alternatives for PZT?,” J. Electroceramics, vol. 19, no. 1, pp. 113–126, Sep. 2007. https://doi.org/10.1007/s10832-007-9047-0

A. D. Woolf, R. Goldman, and D. C. Bellinger, “Update on the Clinical Management of Childhood Lead Poisoning,” Pediatr. Clin. North Am., vol. 54, no. 2, pp. 271–294, Apr. 2007. https://doi.org/10.1016/j.pcl.2007.01.008

M. D. Maeder, D. Damjanovic, and N. Setter, “Lead Free Piezoelectric Materials,” J. Electroceramics, vol. 13, no. 1–3, pp. 385–392, Jul. 2004. https://doi.org/10.1007/s10832-004-5130-y

F. Rubio-Marcos, P. Marchet, T. Merle-Méjean, and J. F. Fernandez, “Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics,” Mater. Chem. Phys., vol. 123, no. 1, pp. 91–97, Sep. 2010. https://doi.org/10.1016/j.matchemphys.2010.03.065

H.-C. Thong, C. Zhao, Z.-X. Zhu, X. Chen, J.-F. Li, and K. Wang, “The impact of chemical heterogeneity in lead-free (K, Na)NbO3 piezoelectric perovskite: Ferroelectric phase coexistence,” Acta Mater., vol. 166, pp. 551–559, Mar. 2019. https://doi.org/10.1016/j.actamat.2019.01.012

J.-F. Li, K. Wang, B.-P. Zhang, and L.-M. Zhang, “Ferroelectric and Piezoelectric Properties of Fine-Grained Na0.5K0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering,” J. Am. Ceram. Soc., vol. 89, no. 2, pp. 706–709, Feb. 2006. https://doi.org/10.1111/j.1551-2916.2005.00743.x

R. E. JAEGER and L. EGERTON, “Hot Pressing of Potassium-Sodium Niobates,” J. Am. Ceram. Soc., vol. 45, no. 5, pp. 209–213, May 1962. https://doi.org/10.1111/j.1151-2916.1962.tb11127.x

E. D. Politova et al., “Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate,” J. Adv. Dielectr., vol. 08, no. 01, p. 1850004, Feb. 2018. https://doi.org/10.1142/S2010135X18500042

S.-H. Hong and D.-Y. Kim, “Effect of Liquid Content on the Abnormal Grain Growth of Alumina,” J. Am. Ceram. Soc., vol. 84, no. 7, pp. 1597–1600, Dec. 2004. https://doi.org/10.1111/j.1151-2916.2001.tb00883.x

B. Chen et al., “High-efficiency synthesis of high-performance K0.5Na0.5NbO3 ceramics,” Powder Technol., vol. 346, pp. 248–255, Mar. 2019. https://doi.org/10.1016/j.powtec.2019.01.039

C. Frances, N. Le Bolay, K. Belaroui, and M. N. Pons, “Particle morphology of ground gibbsite in different grinding environments,” Int. J. Miner. Process., vol. 61, no. 1, pp. 41–56, Jan. 2001. https://doi.org/10.1016/S0301-7516(00)00025-9

I.-W. Chen and R. Riedel, Ceramics Science and Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. https://doi.org/10.1002/9783527631940

I. Seo, C.-R. Lee, and J.-K. Kim, “Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li 4 Ti 5 O 12 anode material,” J. Phys. Chem. Solids, vol. 108, pp. 25–29, Sep. 2017. https://doi.org/10.1016/j.jpcs.2017.04.011

N. Chaiyo, B. Boonchom, and N. Vittayakorn, “Solid-state reaction synthesis of sodium niobate (NaNbO3) powder at low temperature,” J. Mater. Sci., vol. 45, no. 6, pp. 1443–1447, Mar. 2010. https://doi.org/10.1007/s10853-009-4098-z

A. Kamal, M. A. Rafiq, M. N. Rafiq, M. Usman, M. Waqar, and M. S. Anwar, “Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics,” Appl. Phys. A, vol. 122, no. 12, p. 1037, Dec. 2016. https://doi.org/10.1007/s00339-016-0564-z

R. Zuo, J. Rodel, R. Chen, and L. Li, “Sintering and Electrical Properties of Lead-Free Na0.5K0.5NbO3 Piezoelectric Ceramics,” J. Am. Ceram. Soc., vol. 89, no. 6, pp. 2010–2015, Jun. 2006.

https://doi.org/10.1111/j.1551-2916.2006.00991.x

N. Kumada, T. Kyoda, Y. Yonesaki, T. Takei, and N. Kinomura, “Preparation of KNbO3 by hydrothermal reaction,” Mater. Res. Bull., vol. 42, no. 10, pp. 1856–1862, Oct. 2007. https://doi.org/10.1016/j.materresbull.2006.11.045

F. Rubio-Marcos, J. J. Romero, and J. F. Fernandez, “Effect of the temperature on the synthesis of (K,Na)NbO3-modified nanoparticles by a solid state reaction route,” J. Nanoparticle Res., vol. 12, no. 7, pp. 2495–2502, Sep. 2010. https://doi.org/10.1007/s11051-009-9817-5

C. Wattanawikkam, S. Chootin, and T. Bongkarn, “Crystal Structure, Microstructure, Dielectric and Piezoelectric Properties of Lead-Free KNN Ceramics Fabricated via Combustion Method,” Ferroelectrics, vol. 473, no. 1, pp. 24–33, Dec. 2014. https://doi.org/10.1080/00150193.2014.974438

How to Cite
[1]
M. C. Quintero, M. . Rincón, J. M. . Osorio-Guillén, D. López, and F. A. Londoño-Badillo, “Grinding methods effects on the synthesis of Potassium-Sodium Niobate powders by oxide mixing”, TecnoL., vol. 22, no. 46, pp. 15–23, Sep. 2019.

Downloads

Download data is not yet available.
Published
2019-09-20
Section
Research Papers

Altmetric