Design, Analysis, and Modeling of Curved Photovoltaic Surfaces Using Composite Materials

Keywords: Solar Energy, Photovoltaic Surfaces, Curved Solar Panel, Building-Integrated Photovoltaics (BIPV), Vehicle-Integrated Photovoltaics (VIPV)

Abstract

Currently, the use of photovoltaic solar energy has increased considerably due to the development of new materials and the ease to produce them, which has significantly reduced its acquisition costs. Most commercial photovoltaic modules have a flat geometry and are manufactured using metal reinforcement plates and glass sheets, which limits their use in irregular surfaces such as roofs and facades (BIPV) and the transportation sector (VIPV). The purpose of this study is to analyze the design implications of curved photovoltaic surfaces using composite materials. Considering operation and maintenance requirements, the most suitable reinforcement and encapsulation materials are selected based on references and experimental tests. It was found that the maximum radius of curvature that a polycrystalline silicon cell with the dimensions of a SunPower C60 model can achieve is 6.51 m for a failure probability lower than 5 %, which allows us to define the maximum curvature that this photovoltaic surface can reach. Additionally, an analytical model of the reinforcement was implemented using macromechanical models in Matlab™, which was validated by the finite element method employing the composite materials module in Ansys®. Therefore, this paper presents a detailed analysis of the shear stresses between the layers and of the deformations generated in the curved solar panel reinforcement. Finally, under the operating conditions assumed here, carbon fiber presents the best structural behavior in the reinforcement material, while epoxy resin exhibits a better performance in the encapsulation material. These results can facilitate the manufacturing of curved photovoltaic surfaces.

Author Biographies

Gabriel Espitia-Mesa*, Universidad EAFIT, Colombia

Design Engineering Research Group (GRID), Universidad EAFIT, Medellín-Colombia, gjespitia@eafit.edu.co

Efraín Hernández-Pedraza, Universidad EAFIT, Colombia

Design Engineering Research Group (GRID), Universidad EAFIT, Medellín-Colombia, ehernandep@eafit.edu.co 

Santiago Molina-Tamayo, Universidad Nacional de Colombia, Colombia

Universidad Nacional de Colombia, Medellín-Colombia, smolinat@unal.edu.co 

Ricardo Mejía-Gutiérrez, Universidad EAFIT, Colombia

Design Engineering Research Group (GRID), Universidad EAFIT, Medellín-Colombia, rmejiag@eafit.edu.co

References

G. Espitia-Mesa; E. Hernández-Pedraza; S. Molina-Tamayo; R. Mejía-Gutiérrez,” Modeling, analysis and simulation of curved solar cell’s encapsulation reinforcement”, in Workshop on Engineering Applications, Bogotá: Springer, pp. 468–479, 2021.

A. F. Zobaa; R. C. Bansal, Handbook of Renewable Energy Technology. World Scientific, 2011. https://doi.org/10.1142/7489

J. Hauff et al., Unlocking the sunbelt potential of photovoltaics. European Photovoltaic Industry Association and Others, 2010.

Y. B. Assoa; D. Levrard, “A lightweight triangular building integrated photovoltaic module”. Applied Energy, vol. 279, p. 115816, Dec. 2020. https://doi.org/10.1016/j.apenergy.2020.115816

P. Jayathissa; S. Caranovic; J. Hofer; Z. Nagy; A. Schlueter, “Performative design environment for kinetic photovoltaic architecture”, Automation in Construction, vol. 93, pp. 339–347, Sep. 2018. https://doi.org/10.1016/j.autcon.2018.05.013

E. Saretta; P. Caputo; F. Frontini, “An integrated 3D GIS-based method for estimating the urban potential of BIPV retrofit of façades”, Sustainable Cities and Society, vol. 62, p. 102410, Nov. 2020. https://doi.org/10.1016/j.scs.2020.102410

W. Liu; T. T. Chow, “Experimental and numerical analysis of solar absorbing metallic facade panel with embedded heat-pipe-array”, Applied Energy, vol. 265, p. 114736, May. 2020. https://doi.org/10.1016/j.apenergy.2020.114736

S. R. Maadi; M. Khatibi; E. Ebrahimnia-Bajestan; D. Wood, “Coupled thermal-optical numerical modeling of PV/T module – combining CFD approach and two-band radiation DO model”, Energy Conversion and Management, vol. 198, p. 111781, Oct. 2019. https://doi.org/10.1016/j.enconman.2019.111781

M. C. Brito; T. Santos; F. Moura; D. Pera; J. Rocha, “Urban solar potential for vehicle integrated photovoltaics”, Transportation Research Part D: Transport and Environment, vol. 94, p. 102810, May. 2021. https://doi.org/10.1016/j.trd.2021.102810

H. Martin; R. Buffat; D. Bucher; J. Hamper; M. Raubal, “Using rooftop photovoltaic generation to cover individual electric vehicle demand—a detailed case study”. Renewable and Sustainable Energy Reviews, vol. 157, p. 111969, Jan. 2022.

Y. Ota; K. Araki; A. Nagaoka; K. Nishioka; Facilitating vehicle-integrated photovoltaics by considering the radius of curvature of the roof surface for solar cell coverage. Cleaner Engineering and Technology, vol. 7, p. 100446, Apr. 2022. https://doi.org/10.1016/j.clet.2022.100446

D. J. Vergados; I. Mamounakis; P. Makris; E. Varvarigos, “Prosumer clustering into virtual microgrids for cost reduction in renewable energy trading markets”. Sustainable Energy, Grids and Networks, vol. 7, pp. 90–103, Sep. 2016. https://doi.org/10.1016/j.segan.2016.06.002

V. Makarskas; M. Jurevičius; J. Zakis; A. Kilikevičius; S. Borodinas; J. Matijošius; K. Kilikevičienė, “Investigation of the influence of hail mechanical impact parameters on photovoltaic modules”, Engineering Failure Analysis, vol. 124, p. 105309, Jun. 2021. https://doi.org/10.1016/j.engfailanal.2021.105309

H. Hanifi; C. Pfau; M. T. J. Schneider, “A practical optical and electrical model to estimate the power losses and quantification of different heat sources in silicon based PV modules”. Renewable Energy, vol. 127, pp. 602–612, Nov. 2018. https://doi.org/10.1016/j.renene.2018.04.060

G. Wang; Y. Yao; B. Wang; P. Hu, “Design and thermodynamic analysis of aninnovative hybrid solar PV-CT system with multi-segment PV panels”. SustainableEnergy Technologies and Assessments, vol. 37, p. 100631, Feb. 2020. https://doi.org/10.1016/j.seta.2020.100631

A. E. Kabeel; M. Abdelgaied, “Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection”, Journal of Cleaner Production, vol. 224, pp. 40–49, Jul. 2019. https://doi.org/10.1016/j.jclepro.2019.03.199

S. Kiyaee; Y. Saboohi; A. Z. Moshfegh, “A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells”, Energy Conversion and Management, vol. 230, p. 113782, Feb. 2021. https://doi.org/10.1016/j.enconman.2020.113782

S. Kim; S. Kasashima; P. Sichanugrist; T. Kobayashi; T. Nakada; M. Konagai, “Development of thin-film solar cells using solar spectrum splitting technique”, Solar energy materials and solar cells, vol. 119, pp. 214–218, Dec. 2013. https://doi.org/10.1016/j.solmat.2013.07.011

A. Mojiri; R. Taylor; E. Thomsen; G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 654–663, Dec. 2013. https://doi.org/10.1016/j.rser.2013.08.026

F. Kaule; W. Wang; S. Schoenfelder, “Modeling and testing the mechanical strength of solar cells”, Solar energy materials and solar cells, vol. 120, Part. A, pp. 441–447, Jan. 2014. https://doi.org/10.1016/j.solmat.2013.06.048

M. Sander; S. Dietrich; M. Pander; M. Ebert; J. Bagdahn, “Systematic investigation of cracks in encapsulated solar cells after mechanical loading”, Solar Energy Materials and Solar Cells, vol. 111, pp. 82–89, Apr. 2013. https://doi.org/10.1016/j.solmat.2012.12.031

S. Dietrich; M. Pander; M. Sander; S. H. Schulze; M. Ebert, “Mechanical and thermomechanical assessment of encapsulated solar cells by finite-element-simulation”, in: Reliability of photovoltaic cells, modules, components, and systems III, vol. 7773, p. 77730, 2010. https://doi.org/10.1117/12.860661

S. Roy; M. S. Baruah; S. Sahu; B. B. Nayak, “Computational analysis on the thermal and mechanical properties of thin film solar cells”, Materials Today: Proceedings, vol. 44, Part. 1, pp. 1207-1213, 2021. https://doi.org/10.1016/j.matpr.2020.11.241

G. F. Abdelal; A. Atef, “Thermal fatigue analysis of solar panel structure for micro-satellite applications”, International Journal of Mechanics and Materials in Design, vol. 4, no. 1, pp. 53–62, Jan. 2008. https://doi.org/10.1007/s10999-008-9057-3

N. F. M. Roozenburg; N. G. Cross, “Models of the design process: integrating across the disciplines”, Design studies, vol. 12, no. 4, pp. 215–220, Oct. 1991. https://doi.org/10.1016/0142-694X(91)90034-T

D. G. Ullman, The mechanical design process. New York. McGraw-Hill. 1992.

J. Estrada; J. A. Camacho; M. T. Restrepo; C. M. Parra, “Parámetros antropométricos de la población laboral colombiana 1995”, Revista Facultad Nacional de Salud Pública, vol. 15, no. 2, pp. 112-139, Nov. 1998.

M. M. Ansari; A. Chakrabarti, Effect of bullet shape and h/a ratio on ballistic impact behaviour of FRP composite plate: A numerical study. International Journal of Research in Engineering and Technology, vol. 4, no. 13, pp. 435-442, Dec. 2015.

S. Bernal del Río, “Influencing the performance of a Building Integrated Low-Concentration Photovoltaic (BICPV) system by adapting an Anti-Reflective Coating (ARC) with a pyramidal texture”, (Ph.D. thesis), Engineering School, Universidad EAFIT, Medellín, 2021. http://hdl.handle.net/10784/29629

S. N. K. Sagar; M. Sreekumar, “Miniaturized flexible flow pump using SMA actuator”, Procedia Engineering, vol. 64, pp. 896–906, 2013. https://doi.org/10.1016/j.proeng.2013.09.166

E. J. Barbero, Introduction to composite materials design. CRC Press, 2017.

M. S. Chowdhury et al., An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, vol. 27, p. 100431, Jan. 2020. https://doi.org/10.1016/j.esr.2019.100431

How to Cite
[1]
G. . Espitia-Mesa, E. . Hernández-Pedraza, S. . Molina-Tamayo, and R. Mejía-Gutiérrez, “Design, Analysis, and Modeling of Curved Photovoltaic Surfaces Using Composite Materials”, TecnoL., vol. 25, no. 53, p. e2171, May 2022.

Downloads

Download data is not yet available.
Published
2022-05-26
Section
Research Papers

Altmetric