Influence of Operational Parameters of Microwave-Assisted Hydrothermal Carbonization for the obtention of High Energetic Value Products: A Review

Keywords: Agroindustry, renewable energy power generation, hydrothermal carbonization, hydrochar, microwave

Abstract

Agroindustry generates a large amount of organic waste, which is considered suitable biomass for energy use, one of the thermochemical conversion technologies that make it possible to obtain a product with a high energy value is hydrothermal carbonization, which can be microwave-assisted or conventional heating. The objective of this article is to collect information on the influence of the operating parameters in obtaining higher yields and carbon contents of hydrochar in the microwave-assisted hydrothermal carbonization (MAHTC) process, and in turn to demonstrate such influence of the parameters through a meta-analysis. For the meta-analysis, the collected bibliographic information was taken and evaluated through a generalized linear mixed-type model, which allowed concluding that temperature and time influence carbon content, while yield would be mainly influenced by time of reaction. In general terms, the reaction temperature parameter is highlighted as the most important factor in hydrothermal carbonization, since it determines the physicochemical properties of hydrochar, that is, with the information presented here, it is intended to encourage the use of agro-industrial residues to be transformed into products with high energy value, and thus provide a solution to the problem of climate change, promoting the sustainable development of the agricultural sector.

Author Biographies

Sania Pinto-Altamiranda*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, saniapinto9852@correo.itm.edu.co

Johan S. Aristizábal Restrepo , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, johanaristizabal241231@correo.itm.edu.co

María E. González , Universidad de La Frontera, Chile

Universidad de La Frontera, Temuco-Chile, mariaeugenia.gonzalez@ufrontera.cl

Omar D. Gutiérrez , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, omargutierrez@itm.edu.co

Carlos Barrera-Causil , Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, carlosbarrera@itm.edu.co

References

A. Savino; G. Solórzano; C. Quispe; M. C. Correal, Perspectiva de la Gestión de Residuos en América Latina y el Caribe, Programa de las Naciones Unidas para el Medio Ambiente, 2018. https://www.unep.org/es/resources/informe/perspectiva-de-la-gestion-de-residuos-en-america-latina-y-el-caribe

R. Rithuparna; V. Jittin; A. Bahurudeen, “Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: A review”, J. Clean. Prod., vol. 316, p. 128242, Sep. 2021. https://doi.org/10.1016/j.jclepro.2021.128242

Organización de las Naciones Unidas para la Alimentación y la Agricultura, El estado mundial de la agricultura y la alimentación 2019, vol. 32. Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2019. https://doi.org/10.4060/CA6030ES

Organización de las Naciones Unidas para la Alimentación y la Agricultura, Pérdidas y Desperdicios de Alimentos en América Latina y el Caribe, 2016. https://www.fao.org/publications/card/es/c/I5504S/

Organización de las Naciones Unidas para la Alimentación y la Agricultura, El estado mundial de la agricultura y la alimentación 2020, vol. 32. Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2020. https://doi.org/10.4060/cb1447es

The United Nations Environment Programme, “Emissions Gap Emissions Gap Report 2019”, 2019. https://www.unep.org/resources/emissions-gap-report-2019

M. Pateiro et al., “Evaluation of the protein and bioactive compound bioaccessibility/bioavailability and cytotoxicity of the extracts obtained from aquaculture and fisheries by-products”, in Advances in Food and Nutrition Research, Elsevier, 2020, vol. 22, pp. 97–125. https://doi.org/10.1016/bs.afnr.2019.12.002

S. Kamiloglu; M. Tomas; T. Ozdal; P. Yolci-Omeroglu; E. Capanoglu, “Bioactive component analysis”, in Innovative Food Analysis, Elsevier, 2021, pp. 41–65. https://doi.org/10.1016/B978-0-12-819493-5.00002-9

S. Petrulyte; D. Petrulis, “Modern textiles and biomaterials for healthcare”, in Handbook of Medical Textiles, Elsevier, 2011, pp. 1–35. https://doi.org/10.1533/9780857093691.1.3

M. Kumar; A. O. Oyedun; A. Kumar, “A review on the current status of various hydrothermal technologies on biomass feedstock”, Renew. Sustain. Energy Rev., vol. 81, part. 2, pp. 1742–1770, Jan. 2018. https://doi.org/10.1016/j.rser.2017.05.270

Z. Anwar; M. Gulfraz; M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review”, J. Radiat. Res. Appl. Sci., vol. 7, no. 2, pp. 163–173, Apr. 2014, https://doi.org/10.1016/j.jrras.2014.02.003

T. P. T. Pham; R. Kaushik; G. K. Parshetti; R. Mahmood; R. Balasubramanian, “Food waste-to-energy conversion technologies: Current status and future directions”, Waste Manag., vol. 38, pp. 399–408, Apr. 2015, https://doi.org/10.1016/j.wasman.2014.12.004

A. Pandey; T. Bhaskar; M. Stöcker; R. K. Sukumaran, Recent Advances in Thermo-Chemical Conversion of Biomass. Elsevier, 2015. https://doi.org/10.1016/C2013-0-00403-3

K. Tekin; S. Karagöz; S. Bektaş, “A review of hydrothermal biomass processing”, Renew. Sustain. Energy Rev., vol. 40, pp. 673–687, Dec. 2014. https://doi.org/10.1016/j.rser.2014.07.216

D. A. Iryani; S. Kumagai; M. Nonaka; K. Sasaki; T. Hirajima, “Hydrothermal carbonization kinetics of sugarcane bagasse treated by hot compressed water under variabel temperature conditions”, ARPN J. Eng. Appl. Sci., vol. 11, no. 7, pp. 4833–4839, Apr. 2016. http://repository.lppm.unila.ac.id/1111/1/jeas_0416_4033_Publikasi%20Dewi.pdf

M.-M. Titirici; M. Antonietti; N. Baccile, “Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses”, Green Chem., vol. 10, no. 11, p. 1204, May. 2008. https://doi.org/10.1039/b807009a

R. Bolaños Díaz; M. Calderón Cahua, “Introducción al meta-análisis tradicional”, Rev. Gastroenterol. del Perú, vol. 34, no. 1, pp. 45–51, Ene. 2014.

http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1022-51292014000100007&lng=es&nrm=iso

The R Development Core Team, R: A Language and Environment for Statistical Computing. Proyecto GNU, 2008. http://softlibre.unizar.es/manuales/aplicaciones/r/fullrefman.pdf

H. Sayğılı, “Hydrothermal synthesis of magnetic nanocomposite from biowaste matrix by a green and one-step route: Characterization and pollutant removal ability”, Bioresour. Technol., vol. 278, pp. 242–247, Apr. 2019. https://doi.org/10.1016/j.biortech.2019.01.103

X. Chen; Q. Lin; R. He; X. Zhao; G. Li, “Hydrochar production from watermelon peel by hydrothermal carbonization”, Bioresour. Technol., vol. 241, pp. 236–243, Oct. 2017. https://doi.org/10.1016/j.biortech.2017.04.012

L. Cao et al., “Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar”, Bioresour. Technol., vol. 273, pp. 251–258, Feb. 2019. https://doi.org/10.1016/j.biortech.2018.11.013

T. Werpy; G. Petersen, “Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas”, Office of Scientific and Technical Information, Golden, Aug. 2004. https://doi.org/10.2172/15008859

J. Xu; J. Zhang; J. Huang; W. He; G. Li, “Conversion of phoenix tree leaves into hydro-char by microwave-assisted hydrothermal carbonization”, Bioresour. Technol. Reports, vol. 9, p. 100353, Feb. 2020. https://doi.org/10.1016/j.biteb.2019.100353

Y. Gao; J. Remón; A. S. Matharu, “Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review”, Green Chem., vol. 23, no. 10, pp. 3502–3525, 2021. https://doi.org/10.1039/D1GC00623A

L. Zhan; L. Jiang; Y. Zhang; B. Gao; Z. Xu, “Reduction, detoxification and recycling of solid waste by hydrothermal technology: A review”, Chem. Eng. J., vol. 390, p. 124651, Jun. 2020. https://doi.org/10.1016/j.cej.2020.124651

Y. Li et al., “Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals”, Bioresour. Technol., vol. 273, pp. 136–143, Feb. 2019. https://doi.org/10.1016/j.biortech.2018.10.056

S. E. Elaigwu; G. M. Greenway, “Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars”, J. Anal. Appl. Pyrolysis, vol. 118, pp. 1–8, Mar. 2016. https://doi.org/10.1016/j.jaap.2015.12.013

J. Remón; J. Randall; V. L. Budarin; J. H. Clark, “Production of bio-fuels and chemicals by microwave-assisted, catalytic, hydrothermal liquefaction (MAC-HTL) of a mixture of pine and spruce biomass”, Green Chem., vol. 21, no. 2, pp. 284–299, 2019. https://doi.org/10.1039/C8GC03244K

T. Longprang; D. Jaruwat; P. Udomsap; N. Chollacoop; A. Eiad-ua, “Influence of Acid Additive on Nanoporous Carbon Materials via HTC for Catalyst Support”, Mater. Today Proc., vol. 23, part. 4, pp. 762–766, Jul. 2020. https://doi.org/10.1016/j.matpr.2019.12.271

W.-H. Chen; S.-C. Ye; H.-K. Sheen, “Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating”, Bioresour. Technol., vol. 118, pp. 195–203, Aug. 2012. https://doi.org/10.1016/j.biortech.2012.04.101

S. Nizamuddin et al., “An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass”, Rev. Environ. Sci. Bio/Technology, vol. 17, pp. 813–837, Dec. 2018. https://doi.org/10.1007/s11157-018-9476-z

L. Suárez; I. Benavente-Ferraces; C. Plaza; S. de Pascual-Teresa; I. Suárez-Ruiz; T. A. Centeno, “Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste”, Bioresour. Technol., vol. 309, p. 123395, Aug. 2020. https://doi.org/10.1016/j.biortech.2020.123395

A. Méndez; G. Gascó; B. Ruiz; E. Fuente, “Hydrochars from industrial macroalgae ‘Gelidium Sesquipedale’ biomass wastes”, Bioresour. Technol., vol. 275, pp. 386–393, Mar. 2019. https://doi.org/10.1016/j.biortech.2018.12.074

J. Cai; B. Li; C. Chen; J. Wang; M. Zhao; K. Zhang, “Hydrothermal carbonization of tobacco stalk for fuel application”, Bioresour. Technol., vol. 220, pp. 305–311, Nov. 2016. https://doi.org/10.1016/j.biortech.2016.08.098

L. Azaare; M. K. Commeh; A. M. Smith; F. Kemausuor, “Co-hydrothermal carbonization of pineapple and watermelon peels: Effects of process parameters on hydrochar yield and energy content”, Bioresour. Technol. Reports, vol. 15, p. 100720, Sep. 2021. https://doi.org/10.1016/j.biteb.2021.100720

O. F. Cruz Jr; J. Silvestre-Albero; M. E. Casco; D. Hotza; C. R. Rambo, “Activated nanocarbons produced by microwave-assisted hydrothermal carbonization of Amazonian fruit waste for methane storage,” Mater. Chem. Phys., vol. 216, pp. 42–46, Sep. 2018. https://doi.org/10.1016/j.matchemphys.2018.05.079

Z. Liu; A. Quek; S. Kent Hoekman; R. Balasubramanian, “Production of solid biochar fuel from waste biomass by hydrothermal carbonization”, Fuel, vol. 103, pp. 943–949, Jan. 2013. https://doi.org/10.1016/j.fuel.2012.07.069

J. Zhang et al., “Process characteristics for microwave assisted hydrothermal carbonization of cellulose”, Bioresour. Technol., vol. 259, pp. 91–98, Jul. 2018. https://doi.org/10.1016/j.biortech.2018.03.010

E. T. Kostas; D. Beneroso; J. P. Robinson, “The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass”, Renew. Sustain. Energy Rev., vol. 77, pp. 12–27, Sep. 2017. https://doi.org/10.1016/j.rser.2017.03.135

M. F. Zulkornain et al., “Microwave-assisted Hydrothermal Carbonization for Solid Biofuel Application: A Brief Review”, Carbon Capture Sci. Technol., vol. 1, p. 100014, Dec. 2021. https://doi.org/10.1016/j.ccst.2021.100014

S. E. Elaigwu; G. M. Greenway, “Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose”, Int. J. Ind. Chem., vol. 7, pp. 449–456, Dec. 2016. https://doi.org/10.1007/s40090-016-0081-0

S. E. Elaigwu; G. M. Greenway, “Microwave-assisted hydrothermal carbonization of rapeseed husk: A strategy for improving its solid fuel properties”, Fuel Process. Technol., vol. 149, pp. 305–312, Aug. 2016. https://doi.org/10.1016/j.fuproc.2016.04.030

K. Kang et al., “Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar”, Energy, vol. 186, p. 115795, Nov. 2019. https://doi.org/10.1016/j.energy.2019.07.125

M. Guiotoku; C. R. Rambo; F. A. Hansel; W. L. E. Magalhães; D. Hotza, “Microwave-assisted hydrothermal carbonization of lignocellulosic materials”, Mater. Lett., vol. 63, no. 30, pp. 2707–2709, Dec. 2009. https://doi.org/10.1016/j.matlet.2009.09.049

Y. Shao; Y. Long; H. Wang; D. Liu; D. Shen; T. Chen, “Hydrochar derived from green waste by microwave hydrothermal carbonization”, Renew. Energy, vol. 135, pp. 1327–1334, May 2019. https://doi.org/10.1016/j.renene.2018.09.041

L. Kumle; M. L.-H. Võ; D. Draschkow, “Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R”, Behav. Res. Methods, vol. 53, pp. 2528–2543, Dec. 2021. https://doi.org/10.3758/s13428-021-01546-0

S. Ferrari; F. Cribari-Neto, “Beta Regression for Modelling Rates and Proportions”, J. Appl. Stat., vol. 31, no. 7, pp. 799–815, Aug. 2010. https://doi.org/10.1080/0266476042000214501

M. E. Brooks et al., “glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling”, R J., vol. 9, no. 2, pp. 378–400, 2017, https://doi.org/10.32614/RJ-2017-066

How to Cite
[1]
S. Pinto-Altamiranda, J. S. Aristizábal Restrepo, M. E. González, O. D. Gutiérrez, and C. Barrera-Causil, “Influence of Operational Parameters of Microwave-Assisted Hydrothermal Carbonization for the obtention of High Energetic Value Products: A Review”, TecnoL., vol. 25, no. 54, p. e2265, Sep. 2022.

Downloads

Download data is not yet available.
Published
2022-09-01
Section
Review Article

Altmetric

Funding data