Characterization of Calcium Phosphate Cement Inks with Added Poloxamer 407 for Potential Application in 3D Printing

Keywords: Calcium phosphate cement inks, extrusion three-dimensional printing, injectability, poloxamer 407, tricalcium phosphate

Abstract

3D printing of biomaterials is a growing technology in the manufacture of grafts suitable for the repair of bone defects with complex geometries. Calcium phosphate cements (CFC) are bioceramics used in orthopedic medicine due to their similarity to the mineral phase of bone, the ability to be molded as a paste and to harden in situ. The 3D printing of CFC would potentialize their application by allowing reconstructive surgeries of defects with complex geometries, however, a limitation is the low injectability of CFCs due to the phase separation that occurs during the injection of the paste. In this work, the implementation of a thermosensitive polymer such as Poloxamer 407 has been studied to generate an injectable ink. Such ink has been formulated to contain 5% of carbonated hydroxyapatite type B as a biocompatible and biodegradable nucleating agent. Additions of 0 %, 20 % and 40 % Wt aqueous solutions of Poloxamer 407 were evaluated as gel phase at a liquid/powder ratio of 0.75 mL/g. The injectability coefficient, the cohesion of the inks and the compressive strength of the cements using Weibull´s analysis were implemented, determining that the addition of polymer decreases the mechanical properties of the CFC by 52.68 % and 81.23 %, respectively with relation to the control CFC (0%), attributed to a lower densification of the cement. It was concluded that the additions of Poloxamer 407 do not interfere in the precipitation of calcium-deficient hydroxyapatite nor in the in vitro degradation of cements and favors the ink behavior for its possible implementation in 3D printing.

Author Biographies

Maria P. Sarmiento Pineda*, Universidad de Antioquia, Colombia

Universidad de Antioquia, Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Medellín-Colombia, mpaula.sarmiento@udea.edu.co

Juan F. Hernández-Ruiz , Universidad de Antioquia, Colombia

Universidad de Antioquia, Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Medellín-Colombia, juanf.hernandez@udea.edu.co

Jeisson S. Ruiz, Universidad de Antioquia, Colombia

Universidad de Antioquia, Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Medellín-Colombia, jeisson.ruiz@udea.edu.co

Daniel Moreno , Universidad de Antioquia, Colombia

Universitat Politécnica de Catalunya, Grupo Biomateriales, Biomecánica e Ingeniería de Tejidos (BBT), Barcelona-España. Universidad de Antioquia, Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Medellín-Colombia, daniel.morenod@udea.edu.co

María E. López , Universidad de Antioquia, Colombia

Universidad de Antioquia, Grupo de Investigación en Materiales y Recubrimientos Cerámicos (GIMACYR), Medellín-Colombia, esperanza.lopez@udea.edu.co

References

M. P. Nikolova; M. S. Chavali, “Recent advances in biomaterials for 3D scaffolds: A review”, Bioact. Mater., vol. 4, 271–292, Dec. 2019. https://doi.org/10.1016/j.bioactmat.2019.10.005

S. Davaie; T. Hooshmand; S. Ansarifard, “Different types of bioceramics as dental pulp capping materials: A systematic review”, Ceram. Int., vol. 47, no. 1, pp. 20781-20792, Aug. 2021. https://doi.org/10.1016/j.ceramint.2021.04.193

D. Shekhawat; A. Singh; M. K. Banerjee; T. Singh; A. Patnaik, “Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties”, Ceram. Int., vol. 47, no. 3, pp. 3013-3030, Feb. 2021 https://doi.org/10.1016/j.ceramint.2020.09.214

S. V. Dorozhkin, “Calcium-orthophosphate-based bioactive ceramics”, Elsevier Ltd., pp. 297-405, 2018. https://doi.org/10.1016/B978-0-08-102203-0.00013-5

H. Jodati; B. Yılmaz; Z. Evis, “A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features”, Ceram. Int., vol. 46, no. 10, pp. 15725-15739, Jul. 2020. https://doi.org/10.1016/J.CERAMINT.2020.03.192

P. Kumar; B. S. Dehiya; A. Sindhu, “Bioceramics for Hard Tissue Engineering Applications: A Review”, Research India Publications, vol. 13, no. 5, pp. 2744-2752. 2018. http://www.ripublication.com

M. Manzano; M. Vallet-Regí, “Revisiting bioceramics: Bone regenerative and local drug delivery systems”, Prog. Solid State Chem., vol. 40, no. 3, pp. 17-30, Aug. 2012. https://doi.org/10.1016/j.progsolidstchem.2012.05.001

N. W. Kucko; R.-P. Herber; S. C. G. Leeuwenburgh; J. A. Jansen, “Calcium Phosphate Bioceramics and Cements”, in: Princ. Regen. Med., Elsevier, pp. 591-611. 2019. https://doi.org/10.1016/b978-0-12-809880-6.00034-5

I. Lodoso-Torrecilla; J. J. J. P. van den Beucken; J. A. Jansen, “Calcium phosphate cements: Optimization toward biodegradability”, Acta Biomater, vol. 119, pp. 1-12, Jan. 2021 1–12. https://doi.org/10.1016/j.actbio.2020.10.013

J. Ferguson; M. Diefenbeck; M. McNally, “Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections”, J. Bone Jt. Infect., vol. 2, no. 1, pp. 38-51, Jan. 2017. https://doi.org/10.7150/jbji.17234

N. Eliaz; N. Metoki, “Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications”, Materials, vol. 10, no. 4, pp. 1-99, Mar. 2017. https://doi.org/10.3390/ma10040334

A. Barba et al., “Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture”, Acta Biomater., vol. 79, pp. 135-147, Oct. 2018. https://doi.org/10.1016/j.actbio.2018.09.003

M. P. Ginebra; M. Espanol; Y. Maazouz; V. Bergez; D. Pastorino, “Bioceramics and bone healing”, EFORT Open Rev., vol. 3, no. 5, pp. 173-183, May. 2018. https://doi.org/10.1302/2058-5241.3.170056

Y. Maazouz; E. B. Montufar; J. Malbert; M. Espanol; M. P. Ginebra, “Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes”, Acta Biomater., vol. 49, pp. 563-574, Feb. 2017. https://doi.org/10.1016/j.actbio.2016.11.043

R. O’Neill et al., “Critical review: Injectability of calcium phosphate pastes and cements”, Acta Biomater., vol. 50, pp. 1-9, Mar. 2017. https://doi.org/10.1016/j.actbio.2016.11.019

E. B. Montufar; Y. Maazouz; M. P. Ginebra, “Relevance of the setting reaction to the injectability of tricalcium phosphate pastes”, Acta Biomater., vol. 9, no. 4, pp. 6188-6198, Apr. 2013. https://doi.org/10.1016/j.actbio.2012.11.028

E. Giuliano; D. Paolino; M. Fresta; D. Cosco, “Mucosal applications of poloxamer 407-based hydrogels: An overview”, Pharmaceutics., vol. 10, no. 10, pp. 1-27, Sep. 2018. https://doi.org/10.3390/pharmaceutics10030159

P. Zarrintaj et al., “Poloxamer: A versatile tri-block copolymer for biomedical applications”, Acta Biomater., vol. 110, pp. 37-67, Jul. 2020. https://doi.org/10.1016/j.actbio.2020.04.028

L. Klouda; A. G. Mikos, “Thermoresponsive hydrogels in biomedical applications”, Eur. J. Pharm. Biopharm., vol. 68, no. 1, pp. 34-45, Jan. 2008. https://doi.org/10.1016/j.ejpb.2007.02.025

S. Esslinger; R. Gadow, “Additive manufacturing of bioceramic scaffolds by combination of FDM and slip casting”, J. Eur. Ceram. Soc., vol. 40, no. 11, pp. 3707–3713, Sep. 2020. https://doi.org/10.1016/j.jeurceramsoc.2019.10.029

B. Zhang et al., “Porous bioceramics produced by inkjet 3D printing: Effect of printing ink formulation on the ceramic macro and micro porous architectures control”, Compos. Part B Eng., vol. 155, pp. 112-121, Dec. 2018. https://doi.org/10.1016/j.compositesb.2018.08.047

D. Moreno; F. Vargas; J. Ruiz, M. E. López, “Solid-state synthesis of alpha tricalcium phosphate for cements used in biomedical applications”, Bol. La Soc. Esp. Ceram. y Vidr., vol. 59, no. 5, pp. 193-200, Sep. 2020 . https://doi.org/10.1016/j.bsecv.2019.11.004

J.-P. Lafon, “Synthèse, stabilité thermique et frittage d'hydroxyapatites carbonatées”, (Tesis Doctoral), Université de Limoges, Faculté des sciences et technique. (2004).

Y. L. Botero, “Hidroxiapatita Carbonatada, una Opción Como Biomaterial Para Implantes: Una Revisión Del Estado Del Arte”, Rev. Colomb. Mater., no. 8, pp. 79–97, Jun. 2016.

M. I. Ochoa Gómez; E. López; H. Copete, “Síntesis y caracterización de polvos de hidroxiapatita carbonatada tipo b con diferentes contenidos de carbonato”, Rev. Colomb. Mater., no. 17, pp. 22-32, Sep. 2021. https://doi.org/10.17533/UDEA.RCM.N17A03

N. K. Pandit; J. Kisaka, “Loss of gelation ability of Pluronic® F127 in the presence of some salts”, Int. J. Pharm., vol. 145, no. 1-2, pp. 129–136, Dec. 1996. https://doi.org/10.1016/S0378-5173(96)04748-5

ASTM C1424 -15, Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature, ASTM Int., pp. 1–13, 2019. https://doi.org/10.1520/C1424-10

DIN 1389, Determination of Density and Apparent Porosity, DIN (2003) 1-8

C. Baudín; T. Benet; P. Pena, “Effect of graphene on setting and mechanical behaviour of tricalcium phosphate bioactive cements”, J. Mech. Behav. Biomed. Mater., vol. 89, pp. 33-47, Jan. 2019. https://doi.org/10.1016/j.jmbbm.2018.09.002

A. Diez-Escudero; M. Espanol; S. Beats; M. P. Ginebra, “In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition”, Acta Biomater., vol. 60, pp. 81-92, Sep. 2017. https://doi.org/10.1016/j.actbio.2017.07.033

R. G. Carrodeguas; S. De Aza, “α-Tricalcium phosphate: Synthesis, properties and biomedical applications”, Acta Biomater., vol. 7, no. 10, pp. 3536-3546, Oct. 2011. https://doi.org/10.1016/J.ACTBIO.2011.06.019

L. Sinusaite et al., “Synthesis and luminescent properties of Mn-doped alpha-tricalcium phosphate”, Ceram. Int., vol. 47, no. 4, pp. 5335–5340 2021. https://doi.org/10.1016/J.CERAMINT.2020.10.114

S. A. Siddiqi; U. Azhar, Carbonate substituted hydroxyapatite, Elsevier Ltd, pp. 149-173, 2020. https://doi.org/10.1016/b978-0-08-102834-6.00006-9

K. Benataya; M. Lakrat; L.L. Elansari; E. Mejdoubi, “Synthesis of B-type carbonated hydroxyapatite by a new dissolution-precipitation method”, Mater. Today Proc., vol. 31, Sup. 1, S83–S88, 2020. https://doi.org/10.1016/J.MATPR.2020.06.100

S. Shamsi; A. A. Alagan; S. N. E. Sarchio; F. Md Yasin, “Synthesis, characterization, and toxicity assessment of Pluronic F127-functionalized graphene oxide on the embryonic development of Zebrafish (Danio Rerio)”, Int. J. Nanomedicine., vol. 15, pp. 8311—8329, Oct. 2020. https://doi.org/10.2147/IJN.S271159

M. E. Dmitrenko et al., “The development and study of novel membrane materials based on polyphenylene isophthalamide - Pluronic F127 composite”, Mater. Des., vol. 165, pp. 107596, Mar. 2019. https://doi.org/10.1016/J.MATDES.2019.107596

W. Li et al., “Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation”, J. Biomater. Sci. Polym. Ed., vol. 29, no. 10, pp. 1155-1167, Feb. 2018. https://doi.org/10.1080/09205063.2018.1439431

J. Deng; L. Huang; F. Liu, “Understanding the structure and stability of paclitaxel nanocrystals”, Int. J. Pharm., vol. 390, no. 2, pp. 242-249, May. 2010. https://doi.org/10.1016/j.ijpharm.2010.02.013

F. M. Cabrini; M. Champeau; M. G. de Oliveira, “Effect of Pluronic F127 on the 3D pore morphology of poly (N-isopropylacrylamide-co-acrylic acid) hydrogels and their nitric oxide release from S-nitrosoglutathione”, J. Appl. Polym. Sci., vol. 137, no. 36, pp. 49056, Feb. 2020. https://doi.org/10.1002/APP.49056

M.P. Ginebra; C. Canal; M. Espanol; D. Pastorino; E.B. Montufar, “Calcium phosphate cements as drug delivery materials”, Adv. Drug Deliv. Rev., vol. 64, no. 12, pp. 1090-1110, Sep. 2012. https://doi.org/10.1016/j.addr.2012.01.008

I. Grigoraviciute-Puroniene; Y. Tanaka; V. Vegelyte; Y. Nishimoto; K. Ishikawa; A. Kareiva, “A novel synthetic approach to low-crystallinity calcium deficient hydroxyapatite”, Ceram. Int. 45, pp. 15620–15623, 2019. https://doi.org/10.1016/J.CERAMINT.2019.05.072

S. V. Dorozhkin, “Calcium orthophosphate bioceramics”, Ceram. Int., vol. 41, no. 10, Part. B, pp. 13913–13966 2015. https://doi.org/10.1016/j.ceramint.2015.08.004

S. Raymond et al., “Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks”, Acta Biomater., vol. 75, pp. 451–462, Jul. 2018. https://doi.org/10.1016/J.ACTBIO.2018.05.042

S. B. H. Farid, “Hard tissue engineering applications”, in: Bioceram. Mater. Sci. Eng., Elsevier, pp. 119–158, 2019. . https://doi.org/10.1016/b978-0-08-102233-7.00005-7

U. Tariq; R. Hussain; K. Tufail; Z. Haider; R. Tariq; J. Ali, “Injectable dicalcium phosphate bone cement prepared from biphasic calcium phosphate extracted from lamb bone”, Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 103, pp. 109863, Jun. 2019. https://doi.org/10.1016/J.MSEC.2019.109863

How to Cite
[1]
M. P. Sarmiento, J. F. Hernández-Ruiz, J. S. Ruiz, D. . Moreno, and M. E. López, “Characterization of Calcium Phosphate Cement Inks with Added Poloxamer 407 for Potential Application in 3D Printing”, TecnoL., vol. 25, no. 53, p. e2276, May 2022.

Downloads

Download data is not yet available.
Published
2022-05-26
Section
Research Papers

Altmetric

Crossref Cited-by logo