Voltage Regulation in Second-Order Dc-Dc Converters Via the Inverse Optimal Control Design with Proportional-Integral Action

Keywords: Inverse optimal control, DC-DC Converter, Lyapunov function, nonlinear control systems, dynamical system

Abstract

This article addresses the problem regarding power regulation in classical DC-DC second-order converters by means of a nonlinear control technique based on inverse optimal control theory. There are few papers that describe inverse optimal control for DC-DC converters in the literature. Therefore, this study constitutes a contribution to the state of the art on nonlinear control techniques for DC-DC converters. In this vein, the main objective of this research was to implement inverse optimal control theory with integral action to the typical DC-DC conversion topologies for power regulation, regardless of the load variations and the application. The converter topologies analyzed were: (i) Buck; (ii) Boost; (iii) Buck-Boost; and (iv) Non-Inverting Buck-Boost. A dynamical model was proposed as a function of the state variable error, which helped to demonstrate that the inverse optimal control law with proportional-integral action implemented in the different converters ensures stability in each closed-loop operation via Lyapunov’s theorem. Numerical validations were carried out by means of simulations in the PSIM software, comparing the established control law, the passivity-based PI control law, and an open-loop control. As a conclusion, it was possible to determine that the proposed model is easier to implement and has a better dynamical behavior than the PI-PBC, ensuring asymptotic stability from the closed-loop control design.

Author Biographies

Juan Sebastián Gómez-Chitiva, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá – Colombia, juasgomezc@correo.udistrital.edu.co

Andrés Felipe Escalante-Sarrias, Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá – Colombia, afescalantes@correo.udistrital.edu.co

Oscar Danilo Montoya* , Universidad Distrital Francisco José de Caldas, Colombia

Universidad Distrital Francisco José de Caldas, Bogotá – Colombia, odmontoyag@udistrital.edu.co

References

J. O. Petinrin and M. Shaaban, “Overcoming Challenges of Renewable Energy on Future Smart Grid,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 10, no. 2, pp. 229-234, Jun. 2012, https://doi.org/10.12928/telkomnika.v10i2.781

IEA, “Global EV Outlook 2021,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2021

IEA, “Net Zero by 2050: A Roadmap for the Global Energy Sector,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.iea.org/reports/net-zero-by-2050

IEA, “World Energy Outlook 2021: Part of World Energy Outlook,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2021

J. Lee and F. Zhao, “Global Wind Report 2021,” Global Wind Energy Council, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://gwec.net/global-wind-report-2021/

REN21, “Renewables 2021 Global Status Report,” Paris, 2021. Accessed: Mar. 20, 2022. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf

S. Hoyos, C. J. Franco, and I. Dyner, “Integration of Renewable Energies and its Impact on Electricity Price,” Ing Cienc, vol. 13, no. 26, pp. 115–146, Nov. 2017, https://doi.org/10.17230/ingciencia.13.26.5

J. Tello Maita and A. R. Marulanda Guerra, “Modelos de optimización para sistemas de potencia en la evolución hacia redes inteligentes: Una revisión,” Dyna, vol. 84, no. 202, pp. 102–111, Jul. 2017, https://doi.org/10.15446/dyna.v84n202.63354

A. Mehdi, A. Boulahia, H. Medouce, and H. Benalla, “Induction generator using AC/DC/AC PWM converters and its application to the wind-energy systems,” in Eurocon 2013, Jul. 2013, pp. 1038–1043. https://doi.org/10.1109/EUROCON.2013.6625109

N. Bajoria, P. Sahu, R. K. Nema, and S. Nema, “Overview of different control schemes used for controlling of DC-DC converters,” in 2016 International Conference on Electrical Power and Energy Systems (ICEPES), Dec. 2016, pp. 75–82. https://doi.org/10.1109/ICEPES.2016.7915909

F. Mumtaz, N. Zaihar Yahaya, S. Tanzim Meraj, B. Singh, R. Kannan, and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Engineering Journal, vol. 12, no. 4, pp. 3747–3763, Dec. 2021, https://doi.org/10.1016/j.asej.2021.03.022

Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, “Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids,” IEEE J Emerg Sel Top Power Electron, vol. 9, no. 2, pp. 1205–1221, Apr. 2021, https://doi.org/10.1109/JESTPE.2020.2978064

A. Kelly and K. Rinne, “Control of dc-dc converters by direct pole placement and adaptive feedforward gain adjustment,” in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., Mar. 2005, vol. 3, pp. 1970–1975. https://doi.org/10.1109/APEC.2005.1453326

K. Sharma and D. K. Palwalia, “Design of digital PID controller for voltage mode control of DC-DC converters,” in 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Aug. 2017, vol. 2017, pp. 1–6. https://doi.org/10.1109/ICMDCS.2017.8211715

S. Chattopadhyay and S. Das, “A Digital Current-Mode Control Technique for DC–DC Converters,” IEEE Trans Power Electron, vol. 21, no. 6, pp. 1718–1726, Nov. 2006, https://doi.org/10.1109/TPEL.2006.882929

H. Peng and D. Maksimovic, “Digital current-mode controller for DC-DC converters,” in Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Mar. 2005, vol. 2, pp. 899–905. https://doi.org/10.1109/APEC.2005.1453091

M. Namnabat, M. Bayati Poodeh, and S. Eshtehardiha, “Comparison the control methods in improvement the performance of the DC-DC converter,” in 2007 7th Internatonal Conference on Power Electronics, Oct. 2007, pp. 246–251. https://doi.org/10.1109/ICPE.2007.4692386

Q. Feng, J. Y. Hung, and R. M. Nelms, “The application of posicast control to DC-DC converters,” in IECEC ’02. 2002 37th Intersociety Energy Conversion Engineering Conference, Jul. 2002, pp. 698–703. https://doi.org/10.1109/IECEC.2002.1392132

K. Udhayakumar, P. Lakshmi, and K. Boobal, “Hybrid posicast controller for a DC-DC buck converter,” Serbian Journal of Electrical Engineering, vol. 5, no. 1, pp. 121–138, 2008, https://doi.org/10.2298/SJEE0801121K

H. Li and X. Ye, “Sliding-mode PID control of DC-DC converter,” in 2010 5th IEEE Conference on Industrial Electronics and Applications, Jun. 2010, pp. 730–734. https://doi.org/10.1109/ICIEA.2010.5516952

K. Bendaoud et al., “Fuzzy logic controller (FLC): Application to control DC-DC buck converter,” in 2017 International Conference on Engineering & MIS (ICEMIS), May 2017, pp. 1–5. https://doi.org/10.1109/ICEMIS.2017.8272980

N. F. N. Ismail, I. Musirin, R. Baharom, and D. Johari, “Fuzzy logic controller on DC/DC boost converter,” in 2010 IEEE International Conference on Power and Energy, Nov. 2010, pp. 661–666. https://doi.org/10.1109/PECON.2010.5697663

H. K. Khleaf, A. K. Nahar, and A. S. Jabbar, “Intelligent control of DC-DC converter based on PID-neural network,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 4, pp. 2254-2262, Dec. 2019, https://doi.org/10.11591/ijpeds.v10.i4.pp2254-2262

A. Dehghanzadeh, G. Farahani, H. Vahedi, and K. Al-Haddad, “Model predictive control design for DC-DC converters applied to a photovoltaic system,” International Journal of Electrical Power & Energy Systems, vol. 103, pp. 537–544, Dec. 2018, https://doi.org/10.1016/j.ijepes.2018.05.004

W. Gil-González, O. D. Montoya, C. Restrepo, and J. C. Hernández, “Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach,” Sensors, vol. 21, no. 19, p. 6367, Sep. 2021, https://doi.org/10.3390/s21196367

W. Gil-González, O. D. Montoya, and G. Espinosa-Perez, “Adaptive control for second-order DC–DC converters: PBC approach,” in Modeling, Operation, and Analysis of DC Grids, Elsevier, 2021, pp. 289–310. https://doi.org/10.1016/B978-0-12-822101-3.00016-2

C. J. Vega Pérez and R. Alzate Castaño, “Control óptimo inverso como alternativa para la regulación de un convertidor DC-DC elevador,” Tecnura, vol. 19, no. 46, pp. 65-78, Oct. 2015, https://doi.org/10.14483/udistrital.jour.tecnura.2015.4.a05

C. Vega and R. Alzate, “Inverse optimal control on electric power conversion,” in 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Nov. 2014, pp. 1–5. https://doi.org/10.1109/ROPEC.2014.7036320

M. Villegas-Ruvalcaba, K. Gurubel-Tun, and A. Coronado-Mendoza, “Robust Inverse Optimal Control for a Boost Converter,” Energies, vol. 14, no. 9, p. 2507, Apr. 2021, https://doi.org/10.3390/en14092507

R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Cham: Springer International Publishing, 2020. https://doi.org/10.1007/978-3-030-43881-4

D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I, vol. 48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. https://doi.org/10.1007/b137541

R. H. G. Tan and L. Y. H. Hoo, “DC-DC converter modeling and simulation using state space approach,” in 2015 IEEE Conference on Energy Conversion (CENCON), Oct. 2015, pp. 42–47. https://doi.org/10.1109/CENCON.2015.7409511

A. Strauss, An Introduction to Optimal Control Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1968. https://doi.org/10.1007/978-3-642-51001-4

R. E. Kalman, “When Is a Linear Control System Optimal?” Journal of Basic Engineering, vol. 86, no. 1, pp. 51–60, Mar. 1964, https://doi.org/10.1115/1.3653115

C. Vega Pérez and R. Alzate Castaño, “Control óptimo inverso para sistemas no lineales en tiempo continuo,” Respuestas, vol. 19, no. 1, pp. 13–18, Jan. 2014, https://doi.org/10.22463/0122820X.4

R. Sepulchre, M. Janković, and P. V. Kokotović, Constructive Nonlinear Control. London: Springer London, 1997. https://doi.org/10.1007/978-1-4471-0967-9

L. Perko, Differential Equations and Dynamical Systems, vol. 7. New York, NY: Springer New York, 2001. https://doi.org/10.1007/978-1-4613-0003-8

X. Jiaqun and C. Haotian, “Regenerative brake of brushless DC motor for light electric vehicle,” in 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Oct. 2015, pp. 1423–1428. https://doi.org/10.1109/ICEMS.2015.7385262

M. Q. Duong, H. H. Nguyen, T. H. D. Nguyen, T. T. Nguyen, and G. N. Sava, “Effect of component design on the DC/DC power converters dynamics,” in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Mar. 2017, pp. 617–620. https://doi.org/10.1109/ATEE.2017.7905025

P. Rajarshi and D. Maksimovic, “Analysis of PWM nonlinearity in non-inverting buck-boost power converters,” in 2008 IEEE Power Electronics Specialists Conference, Jun. 2008, pp. 3741–3747. https://doi.org/10.1109/PESC.2008.4592538

How to Cite
[1]
J. S. Gómez-Chitiva, A. F. Escalante-Sarrias, and O. D. Montoya, “Voltage Regulation in Second-Order Dc-Dc Converters Via the Inverse Optimal Control Design with Proportional-Integral Action”, TecnoL., vol. 25, no. 55, p. e2369, Nov. 2022.

Downloads

Download data is not yet available.
Published
2022-11-28
Section
Research Papers

Altmetric