Effect of Rubidium Fluoride on Grain Sintering and Optoelectronic Properties of Nanostructured CuInSe2 Thin Films Obtained by Solution Processing

Keywords: Chalcopyrite solar cells, nanostructured films, solution processing, optoelectronic properties of CuInSe2, rubidium fluoride post-treatment

Abstract

Chalcopyrite CuInSe2 (CISe) and Cu(In, Ga)(S, Se)2 (CIGS) absorber layers, have emerged as promising alternatives in the solar cell field due to their unique properties such as power conversion efficiencies (PCEs) above 20 %, direct bandgap, and high absorption coefficient. This enables the making of high-quality PV devices with absorbers from 2 μm thick, significantly reducing the use of raw materials. Additionally, the CISe absorber layer is a desirable material for Perovskite/CIS tandem configuration with a narrow band gap at the bottom that has demonstrated PCEs close to 25 %, and potential applications in lightweight and/or flexible substrates. Recently, the addition of alkali elements such as sodium, potassium, rubidium, and cesium via post-deposition techniques (PDTs) has demonstrated an improvement in CIGS-based solar cells’ performance. In this study, 10, 20, and 30 nm thick layers of rubidium fluoride were post-deposited on CISe-films made by solution processing techniques and then selenized under a selenium-argon atmosphere to improve the CISe photoelectronic properties such as the number of charge carriers collected and grain growth, critical characteristics to ensure useful photovoltaic devices. Thus, the effect of rubidium fluorine on CISe-based solar cells was analyzed using several characterization techniques. According to the results, thin films made by an amine-thiol mixture with uniform atomic composition were obtained. The crystallinity and grain growth improved with an increase in rubidium fluoride addition. Moreover, with 10 nm of rubidium fluoride, an improvement in the lifetime of the charge carrier, photoluminescence intensity, and the number of carriers collected by the solar cells was obtained.

Author Biographies

Jhoan Ruiz*, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín – Colombia, jhoan.ruiz@udea.edu.co

 
Anna Murray, Purdue University, Estados Unidos

Purdue University, West Lafayette – Estados Unidos, murra191@purdue.edu

 
Carol Handwerker, Purdue University, Estados Unidos

Purdue University, West Lafayette – Estados Unidos, handwerker@purdue.edu

 
Daniel Ramírez, Universidad de Antioquia, Colombia

Universidad de Antioquia, Medellín – Colombia, estiben.ramirez@udea.edu.co

Rakesh Agrawal, Purdue University, Estados Unidos

Purdue University, West Lafayette – Estados Unidos, agrawalr@purdue.edu

 

References

A. Sharif, M. S. Meo, M. A. F. Chowdhury, and K. Sohag, “Role of solar energy in reducing ecological footprints: An empirical analysis,” J. Clean. Prod., vol. 292, p. 126028, Apr. 2021. https://doi.org/10.1016/j.jclepro.2021.126028

H. Crane, E. Kinderman, and R. Malhotra, A cubic mile of oil: realities and options for averting the looming global energy crisis, Oxford University Press, 2010.

G. Albalawneh and M. Ramli, “Review—Solution Processing of CIGSe Solar Cells Using Simple Thiol-Amine Solvents Mixture: A Review,” ECS J. Solid State Sci. Technol., vol. 9, no. 6, Jul. 2020. https://doi.org/10.1149/2162-8777/aba4ee

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, “Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%,”IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863–1867, Nov. 2019. https://doi.org/10.1109/JPHOTOV.2019.2937218

P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. Status Solidi - Rapid Res. Lett., vol. 10, no. 8, pp. 583–586, Jul. 2016. https://doi.org/10.1002/pssr.201600199

S. Suresh, D. J. Rokke, A. A. Drew, E. Alruqobah, R. Agrawal, and A. R. Uhl, “Extrinsic Doping of Ink-Based Cu(In,Ga)(S,Se)2-Absorbers for Photovoltaic Applications,” Adv. Energy Mater., vol. 12, no. 18, p. 2103961, Mar. 2022. https://doi.org/10.1002/aenm.202103961

T. Nakada, D. Iga, H. Ohbo, and A. Kunioka, “Effects of sodium on Cu(In, Ga)Se2-based thin films and solar cells,” Japanese J. Appl. Physics, vol. 36, no. 2, 1997. https://doi.org/10.1143/jjap.36.732

S. Ishizuka et al., “Na-induced variations in the structural, optical, and electrical properties of Cu (In,Ga) Se2 thin films,” J. Appl. Phys., vol. 106, no. 3, Aug. 2009. https://doi.org/10.1063/1.3190528

M. A. Contreras et al., “On the role of Na and modifications to Cu(In,Ga)Se/Sub 2/ absorber materials using thin-MF (M=Na, K, Cs) precursor layers [solar cells],” In Conf. Rec. IEEE Photovolt. Spec. Conf., 1997, pp. 359–362. https://doi.org/10.1109/PVSC.1997.654102

S. Uličná et al., “Sodium doping of solution-processed amine-thiol based CIGS solar cells by thermal evaporation of NaCl,” Progress in Photovoltaics: Research and Applications,vol. 29, no. 5, Mar. 2021, pp. 546–557. https://doi.org/10.1002/pip.3408

P. Reinhard et al., “Cu(In,Ga)Se2 thin-film solar cells and modules - A boost in efficiency due to potassium,” IEEE J. Photovoltaics, vol. 5, no. 2, pp. 656–663, Mar. 2015. https://doi.org/10.1109/JPHOTOV.2014.2377516

T. Kodalle et al., “Elucidating the Mechanism of an RbF Post Deposition Treatment in CIGS Thin Film Solar Cells,” RRL Solar, vol. 2, no. 9, p. 1800156, Jul. 2018. https://doi.org/10.1002/solr.201800156

R. Carron et al., “Advanced Alkali Treatments for High-Efficiency Cu(In,Ga)Se2 Solar Cells on Flexible Substrates,” Advanced Energy Materials Excellence in Energy, vol. 9, no. 24, p. 1900408, May. 2019. https://doi.org/10.1002/aenm.201900408

Y. Wang, S. Lv, and Z. Li, “Review on incorporation of alkali elements and their effects in Cu(In,Ga)Se2 solar cells,” J. Mater. Sci. Technol., vol. 96, pp. 179–189, Jan. 2022. https://doi.org/10.1016/j.jmst.2020.07.050

T.-Y. Lin et al., “Alkali-induced grain boundary reconstruction on Cu(In,Ga)Se2 thin film solar cells using cesium fluoride post deposition treatment,” Nano Energy, vol. 68, p. 104299, Feb. 2020. https://doi.org/10.1016/j.nanoen.2019.104299

R. Wuerz, W. Hempel, and P. Jackson, “Diffusion of Rb in polycrystalline Cu(In,Ga)Se2 layers and effect of Rb on solar cell parameters of Cu(In,Ga)Se2 thin-film solar cells,” J. Appl. Phys., vol. 124, no. 16, Oct. 2018. https://doi.org/10.1063/1.5044629

S. D. Deshmukh, R. G. Ellis, D. S. Sutandar, D. J. Rokke, and R. Agrawal, “Versatile Colloidal Syntheses of Metal Chalcogenide Nanoparticles from Elemental Precursors Using Amine-Thiol Chemistry,” Chem. Mater., vol.31, no. 21, pp. 9087-9097, Oct. 2019. https://doi.org/10.1021/acs.chemmater.9b03401

À. Carreté, “Solution-Processing of Chalcogenide Nanoparticles and Thin Films for Photovoltaic Applications,” (Tésis Maestría), Universidad de Barcelona, España, 2015. https://dialnet.unirioja.es/servlet/tesis?codigo=103122

S. Ahn et al., “CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution precursors,” J. Phys. Chem. C, vol. 114, no. 17, pp. 8108–8113, Apr. 2010. https://doi.org/10.1021/jp1007363

M. Kemell, M. Ritala, M. Leskelä, “Thin Film Deposition Methods for CuInSe 2 Solar Cells,” Critical Reviews in Solid State and Materials Sciences,” vol. 30, no. 1, pp. 1-31, Jan. 2007. https://doi.org/10.1080/10408430590918341

H. T. Kodalle, “Unraveling the Structural and Optoelectronic Effects of Rb on Chalcopyrite Solar Cells. Dissertation,”, (Tesis Doctoral), Universidad Halle-Wittenberg, Alemania, 2020. https://d-nb.info/121203161X/34

C. K. Boumenou et al., “Nanoscale Surface Analysis Reveals Origins of Enhanced Interface Passivation in RbF Post Deposition Treated CIGSe Solar Cells,” Adv. Funct. Mater., May. 2023. https://doi.org/10.1002/adfm.202300590

S. Mcleod, E. Alruqobah, and R. Agrawal, “Liquid assisted grain growth in solution processed Cu(In,Ga)(S,Se)2,” Sol. Energy Mater. Sol. Cells, vol. 195, pp. 12–23, Jun. 2019. https://doi.org/10.1016/j.solmat.2019.02.020

E. H. Alruqobah and R. Agrawal, “Potassium Treatments for Solution-Processed Cu(In,Ga)(S,Se)2 Solar Cells,” ACS Appl. Energy Mater., vol. 3, no. 5, pp. 4821–4830, May. 2020. https://doi.org/10.1021/acsaem.0c00422

M. Malitckaya, H.-P. Komsa, V. Havu, and M. J. Puska, “Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber,” J. Phys. Chem., vol. 121, no, 29, pp. 15516-15528, Jul. 2017. https://doi.org/10.1021/acs.jpcc.7b03083

S. Ishizuka, N. Taguchi, and P. J. Fons, “Similarities and Critical Differences in Heavy Alkali-Metal Rubidium and Cesium Effects on Chalcopyrite Cu(In,Ga)Se2 Thin-Film Solar Cells,” J. Phys. Chem. C., vol. 123, no. 29, pp. 17757–17764, Jul. 2019. https://doi.org/10.1021/acs.jpcc.9b06042

E. Avancini et al., “Effects of Rubidium Fluoride and Potassium Fluoride Postdeposition Treatments on Cu(In,Ga)Se2 Thin Films and Solar Cell Performance,” Chem. Mater., vol. 29, no. 22, pp. 9695–9704, Oct. 2017. https://doi.org/10.1021/acs.chemmater.7b03412

C. J. Hages et al., “Identifying the Real Minority Carrier Lifetime in Nonideal Semiconductors: A Case Study of Kesterite Materials,” Adv. Energy Mater., vol. 7, no. 18, May. 2017. https://doi.org/10.1002/aenm.201700167

T. P. Weiss et al., “Injection Current Barrier Formation for RbF Postdeposition- Treated Cu(In,Ga)Se2-Based Solar Cells,” Advanced Materials Interfaces, vol. 5, no. 4, p. 1701007, Dec. 2017. https://doi.org/10.1002/admi.201701007

How to Cite
[1]
J. Ruiz, A. Murray, C. Handwerker, D. Ramírez, and R. Agrawal, “Effect of Rubidium Fluoride on Grain Sintering and Optoelectronic Properties of Nanostructured CuInSe2 Thin Films Obtained by Solution Processing”, TecnoL., vol. 26, no. 57, p. e2587, Jul. 2023.

Downloads

Download data is not yet available.
Published
2023-07-31
Section
Research Papers

Altmetric

Crossref Cited-by logo