Risk Assessment of Heavy Metals in Acid Soils Collected from Different Agricultural Systems in the Piedemonte Llanero in Colombia

Keywords: Contamination factor, pollution load index, Nemerov integrated pollution index, geo-accumulation index, heavy metals, tropical soils

Abstract

Agricultural soils may become polluted by heavy metals as a result of receiving a significant amount of pollutants from different sources of land applications, such as fertilizers, animal manure, sewage sludge, pesticides, and wastewater irrigation. Given that information on the distribution of heavy metals (HMs) in the Piedemonte Llanero of Colombia is still quite limited, the main objectives of this work were to characterize the content of these elements and their potential pollution level in acidic soils under different agricultural systems. The hypothesis is to verify if the type of land use poses an environmental threat. To achieve these goals, the concentrations of seven metals were determined in the soils of three agricultural production systems: oil palm, pastures, and semi-annual crops. Soil contamination was evaluated based on the Geo-Accumulation Index (I-geo), contamination factor (CF), Pollution Load Index (PLI), and Nemerov Integrated Pollution Index (NIPI). One outstanding result was that the average concentrations of HMs in the collected topsoil samples were as follows: Mn (110.5 mg kg-1), Zn (31.93 mg kg-1), Cr (8.85 mg kg-1), Ni (11.68 mg kg-1), Cu (11.28 mg kg-1), Pb (9.42 mg kg-1) and Cd (0.21 mg kg-1). The results obtained from this study provide an estimation of the pollution status of HMs. Agricultural activities, especially the overuse of phosphate fertilizer, were the main source of nutrients across the study area. This information can become a fundamental tool to establish monitoring and follow-up processes for sustainable soil management in the Piedemonte Llanero. In conclusion, the present study highlights and provides specific information in a hyperhumid environment.

Author Biographies

Juan Manuel Trujillo-González*, Universidad de los Llanos, Colombia

Instituto de Ciencias Ambientales de la Orinoquia Colombiana, Universidad de los Llanos, Villavicencio – Colombia, jtrujillo@unillanos.edu.co

Deiver Alexis García-Bravo, Universidad de los Llanos, Colombia

Instituto de Ciencias Ambientales de la Orinoquia Colombiana, Universidad de los Llanos, Villavicencio – Colombia, deiver.garcia@unillanos.edu.co

Jose Ismael Rojas-Peña, Universidad de los Llanos, Colombia

Instituto de Ciencias Ambientales de la Orinoquia Colombiana, Universidad de los Llanos, Villavicencio – Colombia, jose.rojas.pena@unillanos.edu.co

Marlon Serrano-Gómez, Centro de Innovación y Tecnología Ecopetrol, Colombia

Centro de Innovación y Tecnología, Ecopetrol S.A., Bucaramanga – Colombia, marlon.serrano@ecopetrol.com.co

Edgar Fernando Castillo-Monroy, Centro de Innovación y Tecnología Ecopetrol, Colombia

Centro de Innovación y Tecnología, Ecopetrol S.A., Bucaramanga – Colombia, edgar.castillo@ecopetrol.com.co

Marco Aurelio Torres-Mora, Universidad de los Llanos, Colombia

Instituto de Ciencias Ambientales de la Orinoquia Colombiana, Universidad de los Llanos, Villavicencio – Colombia, marcotorres@unillanos.edu.co

Francisco J. García-Navarro, Universidad de Castilla-La Mancha, España

Universidad de Castilla-La Mancha, Ciudad Real – España, fcojesus.garcia@uclm.es

Raimundo Jiménez-Ballesta, Universidad Autónoma de Madrid, España

Universidad Autónoma de Madrid, Madrid – España, raimundo.jimenez@uam.es

References

P. S. Hooda, Trace elements in soils, Chichester, U.K. John Wiley & Sons, 2010. https://doi.org/10.1002/9781444319477

M. Oves, M. S. Khan, A. Zaidi, and E. Ahmad, “Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview,” Toxicity of Heavy Metals to Legumes and Bioremediation, pp. 1-27, Feb. 2012. https://doi.org/10.1007/978-3-7091-0730-0_1

M. Wen, Z. Ma, D. B. Gingerich, X. Zhao, and D. Zhao, “Heavy metals in agricultural soil in China: A systematic review and meta-analysis,” Eco-Environment & Health, vol. 1, no. 4, pp. 219-228, Dec. 2022. https://doi.org/10.1016/j.eehl.2022.10.004

L. H. P. Jones, S. C. Jarvis, D. J. Green, and M. H. B. Hayes, Clay Minerals, The Chemistry of Soil Processes, Chichester, U.K. John Wiley & Sons, 2018. https://doi.org/10.1180/claymin.1982.017.2.14

K. Weggler, M. J. McLaughlin, and R. D. Graham, “Effect of chloride in soil solution on the plant availability of biosolid‐borne cadmium,” Journal of Environmental Quality, vol. 33, no. 2, pp. 496-504, Mar. 2004. https://doi.org/10.2134/jeq2004.4960

M. J. McLaughlin, R. E. Hamon, R. G. McLaren, T. W. Speir, and S. L. Rogers, “Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand,” Soil Research, vol. 38, no. 6, pp. 1037-1086, 2000. https://doi.org/10.1071/SR99128

M. E. Sumner, “Beneficial use of effluents, wastes, and biosolids,” Communications in Soil Science and Plant Analysis, vol. 31, no. 11-14, pp. 1701-1715, Nov. 2008. https://doi.org/10.1080/00103620009370532

United States Environmental Protection Agency, Background Report on Fertilizer Use, Contaminants and Regulations, Columbus, 1999.

F. Zeng et al, “The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants,” Environmental Pollution, vol. 159, no. 1, pp. 84-91, Jan. 2011. https://doi.org/10.1016/j.envpol.2010.09.019

M.-L. Bloemen, B. Markert, and H. Lieth, “The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use,” Science of the Total Environment, vol. 166, no. 1-3, pp. 137-148, Apr. 1995. https://doi.org/10.1016/0048-9697(95)04520-B

Z. Atafar et al., “Effect of fertilizer application on soil heavy metal concentration,” Environmental Monitoring and Assessment, vol. 160, pp. 83-89, Jan. 2010. https://doi.org/10.1007/s10661-008-0659-x

B. Wei, J. Yu, Z. Cao, M. Meng, L. Yang, and Q. Chen, “The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application,” International Journal of Environmental Research and Public Health, vol. 17, no. 15, pp. 5359, Jul. 2020. https://doi.org/10.3390/ijerph17155359

A. Alengebawy, S. T. Abdelkhalek, S. R. Qureshi, and M.-Q. Wang “Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications”. Toxics, vol. 9, no. 3, p. 42, Feb. 2021. https://doi.org/10.3390/toxics9030042

J. D. Mahecha-Pulido, J. M. Trujillo-González, and M. A. Torres-Mora, “Análisis de estudios en metales pesados en zonas agrícolas de Colombia,” Orinoquia, vol. 21, no. Extra 1, pp. 83-93, Apr. 2017. https://dialnet.unirioja.es/servlet/articulo?codigo=7051738

J. D. Mahecha-Pulido, J. M. Trujillo-González, and M. A. Torres-Mora “Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta,” Orinoquia, vol. 19, no. 1, pp. 118-122, Jun. 2015. https://www.redalyc.org/articulo.oa?id=89640816011

D. D. Jamioy Orozco, J. C. Menjivar Flores, and Y. Rubiano Sanabria, “Indicadores químicos de calidad de suelos en sistemas productivos del Piedemonte de los Llanos Orientales de Colombia,” Acta agronómica, vol. 64, no. 4, pp. 302-307, Oct. 2015. https://doi.org/10.15446/acag.v64n4.38731

M. A. Ramírez Niño and M. A. Navarro Ramírez, “Análisis de metales pesados en suelos irrigados con agua del río Guatiquía,” Ciencia En Desarrollo, vol. 6, no. 2, pp. 167-175, Jul. 2015. http://docplayer.es/22033351-Analisis-de-metales-pesados-en-suelos-irrigados-con-agua-del-rio-guatiquia.html

Cormacarena, “Plan de Ordenación y Manejo de la Cuenca del río Acacías-Pajure. Plan de ordenación del recurso hídrico para el río Acacías y sus afluentes ríos Orotoy y Acaciitas”, Documento técnico. p. 160, 2012. https://www.cormacarena.gov.co/gestion-de-planificacion/pomcas/

United States Department of Agriculture – Natural Resources Conservation Service, Soil Survey Staff. Keys to Soil Taxonomy. Tenth Edition, 2006. https://nrcspad.sc.egov.usda.gov/DistributionCenter/pdf.aspx?productID=459&KeystoSoilTaxonomy

C. Micó, L. Recatalá, M. Peris, and J. Sánchez, “Assessing heavy metal sources in agricultural soils of and European Mediterranean area by multivariate analysis,” Chemosphere, vol. 65, no. 5, pp. 863-872, Oct. 2006. https://doi.org/10.1016/j.chemosphere.2006.03.016

G. W. Gee and J. W. Bauder, “Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters,” Soil Science Society of America Journal, vol. 43, no. 5, pp. 1004-1007, Sep. 1979. https://doi.org/10.2136/sssaj1979.03615995004300050038x

M. L. Jackson, Soil chemical analysis, India, Prentice Hall of Indian Pvt. Ltd, 1967. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=105097

G. Müller, “Index of geo-accumulation in sediments of the Rhine River,” GeoJournal, vol. 2, no. 3, pp. 108-118, Jan. 1969. https://www.scinapse.io/papers/782739266

L. L. García-Martínez and C. Poleto, “Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo),” Journal of Soils and Sediments, vol. 14, no. 7, pp. 1251-1257, Feb. 2014. https://doi.org/10.1007/s11368-014-0871-y

A. Daripa et al., “Risk assessment of agricultural soils surrounding an iron ore mine: A field study from Western Ghat of Goa, India,” Soil and Sediment Contamination: An International Journal, vol. 32, no. 5, pp. 570-590, Aug. 2022. https://doi.org/10.1080/15320383.2022.2111403

L. Hakanson, “An ecological risk index for aquatic pollution control. A sedimentological approach,” Water Research, vol. 14, no. 8, pp. 975-1001, 1980. https://doi.org/10.1016/0043-1354(80)90143-8

D. L. Tomlinson, J. G. Wilson, C. R. Harris, and D. W. Jeffrey, “Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index,” Helgoländer meeresuntersuchungen, vol. 33 no. 1, pp. 566-575, Mar. 1980. https://doi.org/10.1007/BF02414780

J. M. Trujillo-González, M. A. Torres-Mora, M. Serrano-Gómez, E. F. Castillo-Monroy, and R. Jiménez-Ballesta, “Baseline values and environmental assessment for metal (loid)s in soils under a tropical rainy climate in a Colombian region”, Environmental Monitoring and Assessment, vol. 194, no. 494, Jun. 2022. https://doi.org/10.1007/s10661-022-10036-5

A. M. Taiwo et al., “Spatial distribution, pollution index, receptor modelling and health risk assessment of metals in road dust from Lagos metropolis, Southwestern Nigeria,” Environmental Advances, vol. 2, p. 100012, Dec. 2020. https://doi.org/10.1016/j.envadv.2020.100012

J. M. Trujillo-González, M. A. Torres-Mora, R. Jiménez Ballesta, and E. C. Brevik, “Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia,” Environmental Earth Sciences, vol. 81, no. 108, Feb. 2022. https://doi.org/10.1007/s12665-022-10235-w

J. M. Trujillo-González, J. D. Mahecha-Pulido, M. A. Torres-Mora, E. C. Brevik, S. D. Keesstra, and R. Jiménez-Ballesta, “Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate,” Agriculture, vol. 7, no. 7, p. 52, Jun. 2017. https://doi.org/10.3390/agriculture7070052

Instituto Geográfico Agustín Codazzi, “Estudio General de Suelos y Zonificación de Tierras, Departamento de Meta,” Colombia, 2004. https://catalogo.unillanos.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=17983

M. J. Yacomelo Hernández, “Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, suelos en el sur del Atlántico, Colombia,” (Tesis de maestría), Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, 2014. https://repositorio.unal.edu.co/handle/unal/21826

L. Chen, J. Wang, J. Beiyuan, X. Guo, H. Wu, and L. Fang, “Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis,” Sci Total Environ, vol. 816, p. 151556, Apr. 2021. https://doi.org/10.1016/j.scitotenv.2021.151556

S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu, “Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China,” Environmental Pollution, vol. 152, no. 3, pp. 686-692, Apr. 2008. https://doi.org/10.1016/j.envpol.2007.06.056

F. Faridullah, M. Umar, A. Alam, M. A. Sabir, and D. Khan, “Assessment of heavy metals concentration in phosphate rock deposits, Hazara basin, Lesser Himalaya Pakistan,” Geosciences Journal, vol. 21, no 5, pp. 743-752, Aug. 2017. https://doi.org/10.1007/s12303-017-0013-9

S. S. Das et al., “Soil health and its relationship with food security and human health to meet the sustainable development goals in India,” Soil Security, vol. 8, p. 100071, Sep. 2022.https://doi.org/10.1016/j.soisec.2022.100071

How to Cite
[1]
J. M. Trujillo-González, “Risk Assessment of Heavy Metals in Acid Soils Collected from Different Agricultural Systems in the Piedemonte Llanero in Colombia”, TecnoL., vol. 26, no. 57, p. e2667, Jul. 2023.

Downloads

Download data is not yet available.
Published
2023-07-14
Section
Research Papers

Altmetric

Crossref Cited-by logo