Methodology for determining angular displacement in three-phase transformers

  • Nicolás Muñoz-Galeano Universidad de Antioquia
  • Jesús M. López-Lezama Universidad de Antioquia
  • Fernando Villada-Duque Universidad de Antioquia
Keywords: Angular displacement, connections, three-phase transformers, voltage and current phasors, graphic method.

Abstract

This paper presents methodology for determining angular displacement (connections or vector group (colloquial)) in three-phase transformers. The proposed methodology is useful to determine the angular displacement if connections are known or the connections if angular displacement is known. Even though connection of three-phase transformers requires knowledge of angular displacement; the technical literature does not report a rigorous methodology or procedure for their explicit step by step determination. However, there are numerous applications in the areas of engineering and research that use time group connections. This paper presents the methodology for determining the Yy, Yd, Dy, Dd, Zy and Zd connections; including the use of time groups in some relevant engineering applications. The proposed methodology can be applied for commercial and noncommercial transformers, and also for power and distribution transformers.

Author Biographies

Nicolás Muñoz-Galeano, Universidad de Antioquia
Doctor en Ingeniería Electrónica, Departamento Ing. Eléctrica, Grupo de Manejo Eficiente de la Energía – GIMEL, Facultad de Ingeniería, Universidad de Antioquia, Medellín
Jesús M. López-Lezama, Universidad de Antioquia
Doctor en Ingeniería Eléctrica, Departamento Ing.  Eléctrica, Grupo de Manejo Eficiente de la Energía–GIMEL, Universidad de Antioquia, Medellín
Fernando Villada-Duque, Universidad de Antioquia
Doctor en Ingeniería Eléctrica, Departamento Ing. Eléctrica, Grupo de Manejo Eficiente de la Energía–GIMEL, Universidad de Antioquia, Medellín

References

E. Marlés Sáenz, “Metodología generalizada para determinar los grupos de conexión,” Energía y Comput., vol. 13, no. 2, 2011.

C. A. Hernández Suárez, V. A. Gómez Saavedra, and R. A. Peña Lote, “Sistema de adquisición de datos para determinar el grupo de conexión en el transformador trifásico DL1080,” Tecnura, vol. 18, no. 42, pp. 65–77, 2014.

W. Guo, R. Enen, and T. Mingxing, “A Hybrid Active Compensation Method for Current Balance Based on Y,d11 Connection Traction Transformer,” Power Electronics and Intelligent Transportation System, 2008. PEITS ’08. Workshop on. pp. 582–586, 2008.

G. Ionescu, G. Paltanea, and V. Paltanea, “A method for minimization the harmonic distortions in three-phase inverter devices,” 8th International Syposium on Advanced Topics in Electrical Engineering(ATEE). pp. 1–4, 2013.

H. Mahmood and J. Jiang, “Modeling and Control System Design of a Grid Connected VSC Considering the Effect of the Interface Transformer Type,” IEEE Transactions on Smart Grid, vol. 3, no. 1. pp. 122–134, 2012.

F. Corcoles, L. Sainz, J. Pedra, J. Sánchez-Navarro, and M. Salichs, “Three-phase transformer modelling for unbalanced conditions, Part 1: core modelling and introductory examples,” IET Electric Power Applications, vol. 2, no. 2. pp. 99–112, 2008.

B. Singh, P. Jayaprakash, T. R. Somayajulu, and D. P. Kothari, “Reduced Rating VSC With a Zig-Zag Transformer for Current Compensation in a Three-Phase Four-Wire Distribution System,” IEEE Trans. Power Deliv., vol. 24, no. 1, pp. 249–259, Jan. 2009.

H.-L. Jou, K.-D. Wu, J.-C. Wu, and W.-J. Chiang, “A Three-Phase Four-Wire Power Filter Comprising a Three-Phase Three-Wire Active Power Filter and a Zig-Zag Transformer,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 252–259, Jan. 2008.

A. N. Arvindan and C. Sanal, “Investigation for harmonic mitigation in the line and neutral currents of three-phase four-wire system feeding two-pulse rectifiers with balanced and unbalanced load using Zig-Zag transformer,” in 2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES), 2014, pp. 194–201.

Sewan Choi and Minsoo Jang, “Analysis and Control of a Single-Phase-Inverter-Zigzag-Transformer Hybrid Neutral-Current Suppressor in Three-Phase Four-Wire Systems,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2201–2208, Aug. 2007.

P. S. C. Nair and P. P. K., “A novel method for recovery of drainage power from distribution transformers,” Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International Conference and Exhibition on. pp. 1–5, 2011.

K. Jin and C. Liu, “A Novel PWM High Voltage Conversion Ratio Bidirectional Three-Phase DC/DC Converter With Y–Δ Connected Transformer,” IEEE Transactions on Power Electronics, vol. 31, no. 1. pp. 81–88, 2016.

L. Gu, K. Jin, and C. Liu, “Current-tripler-rectifier pulse width modulation ZVS three-phase full-bridge DC/DC converter with Y–Δ connected transformer,” IET Power Electronics, vol. 8, no. 7. pp. 1111–1118, 2015.

R. Anuraj, A. Sathesh, and S. Smys, “Neutral current and harmonic mitigation using ZSBR with various transformer topologies,” in 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 2015, pp. 1695–1700.

E. Unicrom, “Polaridad de un transformador eléctrico,” 2015. [Online]. Available: http://unicrom.com/polaridad-de-un-transformador-electrico/. [Accessed: 19-Jun-2016].

How to Cite
[1]
N. Muñoz-Galeano, J. M. López-Lezama, and F. Villada-Duque, “Methodology for determining angular displacement in three-phase transformers”, TecnoL., vol. 20, no. 38, pp. 41–53, Feb. 2017.

Downloads

Download data is not yet available.
Published
2017-02-21
Section
Research Papers

Altmetric

Crossref Cited-by logo