Visual in-plane positioning of a Labeled target with subpixel Resolution: basics and application

  • Patrick Sandoz University Bourgogne Franche-Comté
  • July A. Galeano Instituto Tecnológico Metropolitano
  • Artur Zarzycki Instituto Tecnológico Metropolitano
  • Deivid Botina Instituto Tecnológico Metropolitano
  • Fabián Cortés-Mancera Instituto Tecnológico Metropolitano
  • Andrés Cardona Instituto Tecnológico Metropolitano
  • Laurent Robert University Bourgogne Franche-Comté
Keywords: Fourier transform phase processing, visual in-plane position measurement, vibration amplitude, shear force microscopy, postion referenced microscopy

Abstract

Vision is a convenient tool for position measurements. In this paper, we present several applications in which a reference pattern can be defined on the target for a priori knowledge of image features and further optimization by software. Selecting pseudoperiodic patterns leads to high resolution in absolute phase measurements. This method is adapted to position encoding of live cell culture boxes. Our goal is to capture each biological image along with its absolute highly accurate position regarding the culture box itself. Thus, it becomes straightforward to find again an already observed region of interest when a culture box is brought back to the microscope stage from the cell incubator where it was temporarily placed for cell culture. In order to evaluate the performance of this method, we tested it during a wound healing assay of human liver tumor-derived cells. In this case, the procedure enabled more accurate measurements of the wound healing rate than the usual method. It was also applied to the characterization of the in-plane vibration amplitude from a tapered probe of a shear force microscope. The amplitude was interpolated by a quartz tuning fork with an attached pseudo-periodic pattern. Nanometer vibration amplitude resolution is achieved by processing the pattern images. Such pictures were recorded by using a common 20x magnification lens.

Author Biographies

Patrick Sandoz, University Bourgogne Franche-Comté

PhD en Ciencias para la Ingeniería, Chargé de Recherche C.N.R.S., Department of Applied Mechanics, FEMTO-ST Institute

July A. Galeano, Instituto Tecnológico Metropolitano

PhD en Ciencias para la Ingeniería, Ingeniería de Sistemas, Grupo de Investigación en Materiales Avanzados y Energía MatyEr, Línea Biomateriales y Electromedicina, Facultad de Ingenierías

Artur Zarzycki, Instituto Tecnológico Metropolitano

PhD en Microtecnología, Ingeniería Electromecánica, Grupo de Investigación en Automática, Electrónica y Ciencias Computacionales, Línea Sistemas de Control y Robótica, Facultad de Ingenierías

Deivid Botina, Instituto Tecnológico Metropolitano

Technologist in Electronic, Electronic Engineering Student, Ingeniería Electrónica, Grupo de Investigación en Materiales Avanzados y Energía MatyEr, Línea Biomateriales y Electromedicina, Facultad de Ingenierías

Fabián Cortés-Mancera, Instituto Tecnológico Metropolitano

MSc en Ciencias Básicas Biomédicas, Grupo de Investigación e Innovación Biomédica – GIB, Laboratorio de Ciencias Biomédicas, Facultad de Ciencias Exactas y Aplicadas

Andrés Cardona, Instituto Tecnológico Metropolitano

Ing. Biomédico, Master Student, Grupo de Investigación e Innovación Biomédica – GIB, Laboratorio de Ciencias Biomédicas, Facultad de Ciencias Exactas y Aplicadas

Laurent Robert, University Bourgogne Franche-Comté

PhD Ingénieur de Recherche, FEMTO-ST Institute

References

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science (80-. )., vol. 313, no. 5793, pp. 1642–1645, Sep. 2006.

B. Tamadazte, N. L.-F. Piat, and S. Dembélé, “Robotic Micromanipulation and Microassembly Using Monoview and Multiscale Visual Servoing,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 2, pp. 277– 287, Apr. 2011.

B. Tamadazte, S. Dembélé, G. Fortier, and N. Le Fort-Piat, “Automatic micromanipulation using multiscale visual servoing,” in 4th IEEE Conference on Automation Science and Engineering, 2008, pp. 977–982.

V. Guelpa, G. J. Laurent, B. Tamadazte, P. Sandoz, N. Le Fort-Piat, and C. Clevy, “Single frequency-based visual servoing for microrobotics applications,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4274–4279.

C. Q. Davis and D. M. Freeman, “Using a light microscope to measure motions with nanometer accuracy,” Opt. Eng., vol. 37, no. 4, p. 1299, Apr. 1998.

A. J. Aranyosi and D. M. Freeman, “SoundInduced Motions of Individual Cochlear Hair Bundles,” Biophys. J., vol. 87, no. 5, pp. 3536–3546, Nov. 2004.

S. J. T. ; D. M. Freeman, “Multi-image gradient-based algorithms for motion estimation,” Opt. Eng., vol. 40, no. 9, p. 2003, Sep. 2001.

J. Zhang, G. Jin, S. Ma, and L. Meng, “Application of an improved subpixel registration algorithm on digital speckle correlation measurement,” Opt. Laser Technol., vol. 35, no. 7, pp. 533–542, Oct. 2003.

C. Poilane, E. Lantz, G. Tribillon, and P. Delobelle, “Measurement of in-plane displacement fields by a spectral phase algorithm applied to numerical speckle photograph for microtensile tests,” Eur. Phys. J. Appl. Phys., vol. 11, no. 2, pp. 131– 145, Aug. 2000.

D. St-Jacques, S. Martel, and T. B. FitzGerald, “Nanoscale grid based positioning system for miniature instrumented robots,” in Canadian Conference on Electrical and Computer Engineering, 2003. IEEE CCECE 2003, 2003, vol. 3, pp. 1831–1834.

D. B. Boyton, “Position encoder using statistically biased pseudorandom sequence,” US006789042B2, 2004. [12] V. Guelpa, P. Sandoz, M. A. Vergara, C. Clévy, N. Le Fort-Piat, and G. J. Laurent,

Visual in-plane positioning of a labeled target with subpixel resolution: basics and application

TecnoLógicas, Vol. 20, No. 39, mayo - agosto de 2017“2D visual micro-position measurement based on intertwined twin-scale patterns,” Sensors Actuators A Phys., vol. 248, pp. 272– 280, Sep. 2016.

M. J. Yao, “Method of printing location markings on surfaces for microscopic research,” US 20140255274A1, 2013.

M. Wrenn and D. Soenksen, “Systems and methods for tracking a slide using a composite barcode label,” WO 2014018114 A1, 2016.

A. Bosseboeuf and S. Petitgrand, “Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends,” J. Micromechanics Microengineering, vol. 13, no. 4, pp. S23–S33, Jul. 2003. [16] M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt., vol. 22, no. 24, p. 3977, Dec. 1983.

J.-A. Galeano-Zea, P. Sandoz, E. Gaiffe, J.-L. Pretet, and C. Mougin, “Pseudo-Periodic Encryption of Extended 2-D Surfaces for High Accurate Recovery of any Random Zone by Vision,” Int. J. Optomechatronics, vol. 4, no. 1, pp. 65–82, Jan. 2010.

P. Sandoz, J.-M. Friedt, and E. Carry, “Inplane rigid-body vibration mode characterization with a nanometer resolution by stroboscopic imaging of a microstructured pattern.,” Rev. Sci. Instrum., vol. 78, no. 2, p. 23706, Feb. 2007.

J. A. Galeano Z., P. Sandoz, E. Gaiffe, S. Launay, L. Robert, M. Jacquot, F. Hirchaud, J.-L. Prétet, and C. Mougin, “Positionreferenced microscopy for live cell culture monitoring,” Biomed. Opt. Express, vol. 2, no. 5, p. 1307, May 2011.

C.-C. Liang, A. Y. Park, and J.-L. Guan, “In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro.,” Nat. Protoc., vol. 2, no. 2, pp. 329–33, Feb. 2007.

P. Sandoz, J.-M. Friedt, and E. Carry, “Vibration amplitude of a tip-loaded quartz tuning fork during shear force microscopy scanning.,” Rev. Sci. Instrum., vol. 79, no. 8, p. 86102, Aug. 2008.

How to Cite
[1]
P. Sandoz, “Visual in-plane positioning of a Labeled target with subpixel Resolution: basics and application”, TecnoL., vol. 20, no. 39, pp. 127–140, May 2017.

Downloads

Download data is not yet available.
Published
2017-05-02
Section
Research Papers

Altmetric

Crossref Cited-by logo