Effect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite

  • Gabriel Peña-Rodríguez Universidad Francisco de Paula Santander
  • Paola A. Rivera-Suárez Universidad Francisco de Paula Santander
  • César H. González-Gómez Universidad Francisco de Paula Santander
  • Carlos A. Parra-Vargas Universidad Pedagógica y Tecnológica de Colombia
  • Andrés O. Garzón-Posada Universidad Nacional de Colombia
  • David A. Landínez-Téllez Universidad Nacional de Colombia
  • Jairo Roa-Rojas Universidad Nacional de Colombia
Keywords: Composite materials, magnetite, electric polarization, volumetric resistivity, magnetic behavior, XRD

Abstract

This study reports the effect of the concentration of magnetite powders (Fe3O4) on the electrical and magnetic properties of a resin-based composite of thermoset polyester. The samples were prepared by the casting method at different concentrations: 60-40, 70-30, 80-20, 90-10 and 100-0 (% in weight), where the primary phase was resin and the secondary, Fe3O4 powders. The crystalline structure was studied using X-ray diffraction and surface characterization was carried out applying the scanning electron microscopy technique. The electrical response was measured by electric polarization curves as a function of the electric field; and the volumetric electrical resistivity, by an electrometer. The magnetic response was determined by magnetization curves as a function of temperature and intensity of the applied magnetic field. The structural analysis indicates that crystallinity increases as higher concentrations of Fe3O4 are added to the samples. The electrical characterization of the material reveals that the volumetric resistivity decreases as the content of magnetite increases. These reactions indicate an insulation-conductor transition with increasing dielectric constant values. The magnetic characterization presents a linear increase of the saturation of magnetization and magnetic moment as a function of the amount of magnetite added to the polymer matrix, whereas the coercivity shows behaviors of soft magnetic materials for T ˃ Tv and for T < Tv, where Tv represents the temperature of Verwey.

Author Biographies

Gabriel Peña-Rodríguez, Universidad Francisco de Paula Santander

PhD en Ingeniería de Materiales. Facultad de Ciencias Básicas. Departamento de Física. Grupo GIFIMAC. Universidad Francisco de Paula Santander. Cúcuta, Colombia

Paola A. Rivera-Suárez, Universidad Francisco de Paula Santander

Ingeniera Industrial. Facultad de Ingeniería Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia

César H. González-Gómez, Universidad Francisco de Paula Santander

Ingeniero Industrial. Facultad de Ingeniería Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia

Carlos A. Parra-Vargas, Universidad Pedagógica y Tecnológica de Colombia

PhD en física. Escuela de Física: Grupo de Física de Materiales, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia

Andrés O. Garzón-Posada, Universidad Nacional de Colombia

MSC. en Materiales, Estudiante de doctorado en Materiales, Universidad Nacional de Colombia, Bogotá, Colombia

David A. Landínez-Téllez, Universidad Nacional de Colombia

PhD en Física, Grupo de Física de Nuevos Materiales, Universidad Nacional de Colombia, Bogotá, Colombia

Jairo Roa-Rojas, Universidad Nacional de Colombia

PhD en Física, Grupo de Física de Nuevos Materiales, Universidad Nacional de Colombia, Bogotá, Colombia

References

G. Martínez Barrera, E. Martínez Cruz, and M. Martínez López, “Concreto polimérico reforzado con fibras: Efecto de la Radiación Gamma,” Rev. Iberoam. Polímeros, vol. 13, no. 4, pp. 169–178, 2012.

J. Kotek, I. Kelnar, J. Baldrian, and M. Raab, “Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers,” Eur. Polym. J., vol. 40, no. 4, pp. 679–684, Apr. 2004.

L. Y. Jaramillo Zapata and I. D. Patiño Arcila, “Selección de Resinas de Poliéster Insaturado para Procesos de Transferencia de Resina en Molde Cerrado,” Tecno Lógicas, no. 28, pp. 109–127, 2012.

A. O. Garzón Posada, “Síntesis y caracterización de un material compuesto a base de polietileno de alta densidad y magnetita pulverizada,” Universidad Nacional de Colombia, 2015.

M. Y. Razzaq, M. Anhalt, L. Frormann, and B. Weidenfeller, “Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 227–235, Jan. 2007.

B. Weidenfeller, M. Höfer, and F. Schilling, “Thermal and electrical properties of magnetite filled polymers,” Compos. Part A Appl. Sci. Manuf., vol. 33, no. 8, pp. 1041–1053, Aug. 2002.

I. Kong, S. Hj Ahmad, M. Hj Abdullah, D. Hui, A. Nazlim Yusoff, and D. Puryanti, “Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3401–3409, Nov. 2010.

A. O. Garzón Posada, F. Fajardo, D. Landínez, J. Roa, and G. Peña, “Synthesis, Electrical, Structural and Morphological Characterization of a Composite Material Based on Powdered Magnetite and High Density,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. 144, pp. 57–61, 2013.

M. Stewart, M. G. Cain, and D. Hall, Ferroelectric Hysteresis Measurement & Analysis, National Physical Laboratory, 1999.

A. F. Guzmán Escobar, “Síntesis y caracterización de materiales cerámicos compuestos por caolín y alúmina,” Universidad Nacional de Colombia, Bogotá, Colombia, 2014.

D. Fink, H. Wayne Beaty, and J. Carroll, Manual práctico de electricidad para ingenieros, Primera Ed. Barcelona, España: Reverté S.A., 1981.

X. Zhang, O. Alloul, J. Zhu, Q. He, Z. Luo, H. A. Colorado, N. Haldolaarachchige, D. P. Young, T. D. Shen, S. Wei, and Z. Guo, “Iron-core carbon-shell nanoparticles reinforced electrically conductive magnetic epoxy resin nanocomposites with reduced flammability,” RSC Adv., vol. 3, no. 24, p. 9453, 2013.

J. Guo, X. Zhang, H. Gu, Y. Wang, X. Yan, D. Ding, J. Long, S. Tadakamalla, Q. Wang, M. A. Khan, J. Liu, X. Zhang, B. L. Weeks, L. Sun, D. P. Young, S. Wei, and Z. Guo, “Reinforced magnetic epoxy nanocomposites with conductive polypyrrole nanocoating on nanomagnetite as a coupling agent,” RSC Adv., vol. 4, no. 69, p. 36560, Aug. 2014.

S. Liong, “A multifunctional approach to development, fabrication, and characterization of Fe3O4 composites,” Georgia Institute of Technology, Atlanta, Georgia, 2005.

G. D. Limited, “CES EduPack,” Granta Design Limited. Cambridge, United Kingdom, 2013.

I. Kong, S. H. Ahmad, M. H. Abdullah, A. N. Yusoff, M. Rusop, and T. Soga, “The Effect Of Temperature On Magnetic Behavior Of Magnetite Nanoparticles And Its Nanocomposites,” in AIP Conference Proceedings, 2009, vol. 1136, no. 1, pp. 830–834.

N. Mokhtar, M. H. Abdullah, and S. H. Ahmad, “Structural and Magnetic Properties of Type-M Barium Ferrite – Thermoplastic Natural Rubber Nanocomposites,” Sains Malaysiana, vol. 41, no. 9, pp. 1125–1131, 2012.

Z. Guo, S. Park, H. T. Hahn, S. Wei, M. Moldovan, A. B. Karki, and D. P. Young, “Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites,” J. Appl. Phys., vol. 101, no. 9, p. 09M511, May 2007.

L. A. Ramajo, A. A. Cristóbal, P. M. Botta, J. M. Porto López, M. M. Reboredo, and M. S. Castro, “Dielectric and magnetic response of Fe3O4/epoxy composites,” Compos. Part A Appl. Sci. Manuf., vol. 40, no. 4, pp. 388–393, Apr. 2009.

A. Demir, A. Baykal, H. Sözeri, and R. Topkaya, “Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes,” Synth. Met., vol. 187, pp. 75–80, Jan. 2014.

D. Donescu, V. Raditoiu, C. I. Spataru, R. Somoghi, M. Ghiurea, C. Radovici, R. C. Fierascu, G. Schinteie, A. Leca, and V. Kuncser, “Superparamagnetic magnetite–divinylbenzene–maleic anhydride copolymer nanocomposites obtained by dispersion polymerization,” Eur. Polym. J., vol. 48, no. 10, pp. 1709–1716, Oct. 2012.

L. Gu, X. He, and Z. Wu, “Mesoporous Fe3O4 /hydroxyapatite composite for targeted drug delivery,” Mater. Res. Bull., vol. 59, pp. 65–68, Nov. 2014.

M. Di Marco, M. Port, P. Couvreur, C. Dubernet, P. Ballirano, and C. Sadun, “Structural Characterization of Ultrasmall Superparamagnetic Iron Oxide (USPIO) Particles in Aqueous Suspension by Energy Dispersive X-ray Diffraction (EDXD),” J. Am. Chem. Soc., vol. 128, no. 31, pp. 10054–10059, Aug. 2006.

L. Néel, “Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites,” Ann. Géophys, vol. 5, pp. 99–136, 1949.

M. Bohra, S. Prasad, N. Venketaramani, N. Kumar, S. C. Sahoo, and R. Krishnan, “Magnetic properties of magnetite thin films close to the Verwey transition,” J. Magn. Magn. Mater., vol. 321, no. 22, pp. 3738–3741, Nov. 2009.

W. Tabis, “Structural changes in magnetite in vicinity of the Verwey transition observed with various x-ray diffraction methods,” AGH University of Science and Technology, Kraków, Polonia, 2010.

M. Puca, E. Tacuri, M. Hurtado, M. Guerrero, A. Figueroa, N. Rojas, J. Cjuno, S. García, and R. Lopez, “Estudio de las propiedades magnéticas de nanopartículas de poliestireno poroso cargadas con magnetita,” Rev. Peru. química e Ing. química, vol. 15, no. 2, pp. 5–12, 2012.

J. Smit and H. Wijn, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications. Eindhoven: N.V. Philips Gloeilampenfabrieken, 1959.

S. Yáñez Vilar, M. Sánchez Andújar, S. Castro García, J. Mira Pérez, J. Rivas, and M. A. Señarís Rodríguez, “Magnetocapacidad en nanopartículas de Fe3O4 y NiFe2O4,” Boletín la Soc. Española Cerámica y Vidr., vol. 49, no. 1, pp. 81–88, 2010.

Y. Pittini-Yamada, E. A. Périgo, Y. de Hazan, and S. Nakahara, “Permeability of hybrid soft magnetic composites,” Acta Mater., vol. 59, no. 11, pp. 4291–4302, Jun. 2011.

P. Fulay and J.-K. Lee, Electronic, Magnetic, and Optical Materials, 2nd ed. CRC Press LLC, 2016.

A. Hernando and J. M. Rojo, Física de los materiales magnéticos, 1st ed. Madrid, España: Editorial Sintesis, 2001.

J. Cardona Vásquez, “Producción y caracterización de nuevos materiales multiferróicos de la familia RMn1-xFexO3 (R=Ho, Dy, Gd),” Universidad Nacional de Colombia, 2014.

I. Org, “Verwey transition,” in IUPAC Compendium of Chemical Terminology, Research Triagle Park, NC: IUPAC, 2014.

K. M. Reddy, N. P. Padture, A. Punnoose, and C. Hanna, “Magnetoresistance characteristics in individual Fe3O4 single crystal nanowire,” J. Appl. Phys., vol. 117, no. 17, p. 17E115, May 2015.

A. C. Zapata Dederlé, “Síntesis y caracterización de Magnetitas Pura y dopadas con Cerio y Titanio,” Universidad de Antioquia, 2008.

Z. Zhang, N. Church, S.-C. Lappe, M. Reinecker, A. Fuith, P. J. Saines, R. J. Harrison, W. Schranz, and M. A. Carpenter, “Elastic and anelastic anomalies associated with the antiferromagnetic ordering transition in wüstite, FexO,” J. Phys. Condens. Matter, vol. 24, no. 21, p. 13, May 2012.

How to Cite
[1]
G. Peña-Rodríguez, “Effect of the concentration of magnetite on the structure, electrical and magnetic properties of a polyester resin-based composite”, TecnoL., vol. 21, no. 41, pp. 13–27, Jan. 2018.

Downloads

Download data is not yet available.
Published
2018-01-15
Section
Research Papers

Altmetric

Some similar items: