Diseño de una red de sensores inalámbricos para el despliegue óptimo de los nodos sensores en un cultivo de Cacao

Palabras clave: Red de sensores inalámbricos, experimentos factoriales, cultivo agronómico, módulo XBee, ZigBee inalámbrico

Resumen

En este trabajo se realizaron experimentos factoriales en dos escenarios diferentes, para diseñar una red de sensores inalámbricos, que permita monitorear un cultivo de cacao en una zona rural de Colombia. Los nodos sensores miden la temperatura, la humedad relativa, la humedad del suelo, la luz ultravioleta y la intensidad de la luz visible. Los factores considerados en los experimentos fueron la distancia entre los nodos sensores, la altura con respecto al suelo y el tipo de antena; el indicador de intensidad de señal recibida y el tiempo de transferencia de datos fueron las salidas. La red de sensores inalámbricos se implementó en el cultivo, cubriendo aproximadamente el 3 % del área, utilizando 7 nodos diferentes en una topología de cluster-tree. En primer lugar, se utilizó un escenario de campo abierto con línea de vista para determinar la altura adecuada de los sensores de nodo. Luego, se utilizó un escenario en el cultivo de cacao real para encontrar la distancia adecuada entre los módulos y el tipo de antena. Se obtuvo, por cálculos y datos experimentales, que se requería una altura de 1.25 m para evitar la zona de Fresnel y mejorar el RSSI de la red. Además, se determinó que se necesitaba una distancia inferior a 35 m para garantizar la recepción de la señal y evitar largos tiempos de transferencia de datos. Adicionalmente, la antena tipo Wire exhibió un mayor rendimiento y la metodología propuesta y el sistema de monitoreo se pueden usar para aplicaciones agronómicas en áreas rurales de Colombia, con el fin de aumentar el rendimiento de los cultivos.

Biografía del autor/a

Jose M. Celis-Peñaranda, Universidad Francisco de Paula Santander, Colombia

Electronics Engineer, Electricity and Electronics department, GIDET Universidad Francisco de Paula Santander, Cúcuta-Colombia, josemiguelcp@ufps.edu.co

Christian D. Escobar-Amado, Universidad Francisco de Paula Santander, Colombia

Electronics Engineer, Electricity and Electronics department, GIDET, Universidad Francisco de Paula Santander, Cúcuta-Colombia, christiandavidea@ufps.edu.co

Sergio B. Sepúlveda-Mora*, Universidad Francisco de Paula Santander, Colombia

MSc. of Science in Electrical and Computer Engineering, Electricity and Electronics department, GIDET, Universidad Francisco de Paula Santander, Cúcuta-Colombia, sergio.sepulveda@ufps.edu.co

Sergio A. Castro-Casadiego , Universidad Francisco de Paula Santander, Colombia

MSc. in Electronics Engineering, Electricity and Electronics department, GIDET, Universidad Francisco de Paula Santander, Cúcuta-Colombia, sergio.castroc@ufps.edu.co

Byron Medina-Delgado , Universidad Francisco de Paula Santander, Colombia

MSc. in Electronics Engineering, Electricity and Electronics department, GIDET, Universidad Francisco de Paula Santander, Cúcuta-Colombia, byronmedina@ufps.edu.co

Dinael Guevara-Ibarra, Universidad Francisco de Paula Santander, Colombia

PhD. in Engineering, Electricity and Electronics department, GIDET, Universidad Francisco de Paula Santander, Cúcuta-Colombia, dinaelgi@ufps.edu.co

Referencias bibliográficas

J. Azcón-Bieto y M. Talón, Fundamentos de Fisiología Vegetal, Universidad de Barcelona: McGraw-Hill, 2008. Available: http://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetalAzcon.pdf

C. A. Vera Romero, J. E. Barbosa Jaimes, and D. C. Pabón González, “Acople de sensores en la medición de variables ambientales usando tecnología ZigBee,” Sci. Tech., vol. 19, no. 4, pp. 419–424, Dec. 2014. Available: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/9252/5876

Y. Li, X. Guo, R.-H. Shi, and F.-L. Yang, “Monitor and Control Wireless Sensor Nodes by B/S Architecture,” in 2014 International Conference on Wireless Communication and Sensor Network, Wuhan, 2014. pp. 204–206 https://doi.org/10.1109/WCSN.2014.48

J. F. Monsalve-Posada, A. Arias-Londoño, and J. G. Mejía-Arango, “Desempeño de redes inalámbricas y redes industriales inalámbricas en procesos de control en tiempo real bajo ambientes industriales,” TecnoLógicas, vol. 18, no. 34, p. 87, Jan. 2015. https://doi.org/10.22430/22565337.215

M. Lee, J. Hwang, and H. Yoe, “Agricultural Production System Based on IoT,” in 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, 2013. pp. 833–837. https://doi.org/10.1109/CSE.2013.126

J. Ma, X. Zhou, S. Li, and Z. Li, “Connecting Agriculture to the Internet of Things through Sensor Networks,” in 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, 2011. pp. 184–187. https://doi.org/10.1109/iThings/CPSCom.2011.32

Liang-Ying, G. Yun-feng, and Zhao-Wei, “Greenhouse environment monitoring system design based on WSN and GPRS networks,” in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, 2015. pp. 795–798. https://doi.org/10.1109/CYBER.2015.7288044

A. Cama-Pinto, F. Gil-Montoya, J. Gómez-López, A. García-Cruz, and F. Manzano-Agugliaro, “Wireless surveillance sytem for greenhouse crops,” Dyna, vol. 81, no. 184, pp. 164–170, Apr. 2014. https://doi.org/10.15446/dyna.v81n184.37034

S. Ferdoush and X. Li, “Wireless Sensor Network System Design Using Raspberry Pi and Arduino for Environmental Monitoring Applications,” Procedia Comput. Sci., vol. 34, pp. 103–110, 2014. https://doi.org/10.1016/j.procs.2014.07.059

M. S. Azimi Mahmud, S. Buyamin, M. M. Mokji, and M. S. Z. Abidin, “Internet of Things based Smart Environmental Monitoring for Mushroom Cultivation,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 3, pp. 847-852, Jun. 2018. Available: https://pdfs.semanticscholar.org/943e/1308bd9d2677cddc91853814fa779b8578e5.pdf

M. S. M, S. Das, S. Heble, U. Raj, and R. Karthik, “Internet of Things based Wireless Plant Sensor for Smart Farming,” Indones. J. Electr. Eng. Comput. Sci., vol. 10, no. 2, pp. 456-468, May 2018. Available: https://pdfs.semanticscholar.org/eaa9/c145e6d76bb25a53df97bad85e2e7979e17b.pdf

W. T. Sung, J. H. Chen, C. L. Hsiao, and J. S. Lin, “Multi-sensors Data Fusion Based on Arduino Board and XBee Module Technology,” in 2014 International Symposium on Computer, Consumer and Control, Taichung, 2014. pp. 422–425. https://doi.org/10.1109/IS3C.2014.117

M. Pule, A. Yahya, and J. Chuma, “Wireless sensor networks: A survey on monitoring water quality,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 562–570, Dec. 2017. https://doi.org/10.1016/j.jart.2017.07.00

J. C. Correa-Chica, J. F. Botero-Vega, and N. Gaviria-Gómez, “Energy consumption and quality of service in WBAN: A performance evaluation between cross-layer and IEEE802.15.4,” DYNA, vol. 84, no. 202, pp. 120–128, Jul. 2017. https://doi.org/10.15446/dyna.v84n202.61895

C. M. Durán-Acevedo and H. L. García-Sierra, “Desarrollo de un Sistema Inalámbrico para la Supervisión y Control de un Aerogenerador,” TecnoLógicas, pp. 395-409, Oct. 2013. https://doi.org/10.22430/22565337.331

M. R. Fulla, J. L. Palacio-Bedoya, C. A. Flórez-Velásquez, and V. H. Aristizábal-Tique, “Módulo Inalámbrico para el Sensado de Vibraciones Superficiales en Suelos,” TecnoLógicas, vol. Special Ed, pp. 451–464, Oct. 2013. https://doi.org/10.22430/22565337.352

International Telecommunication Union, “Spectrum Monitoring (Handbook).” 2011. Available: https://www.itu.int/pub/R-HDB-23-2011

Cómo citar
[1]
J. M. . Celis-Peñaranda, C. D. . Escobar-Amado, S. B. . . Sepúlveda-Mora, S. A. . Castro-Casadiego, B. Medina-Delgado, y D. . . Guevara-Ibarra, «Diseño de una red de sensores inalámbricos para el despliegue óptimo de los nodos sensores en un cultivo de Cacao», TecnoL., vol. 23, n.º 47, pp. 121–136, ene. 2020.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2020-01-30
Sección
Artículos de investigación

Métricas