Dimensionamiento y análisis de sensibilidad de una microrred aislada usando HOMER Pro

Palabras clave: Análisis de sensibilidad, HOMER Pro, Indicadores económicos, Indicadores técnicos, Microrred aislada, Procedimiento de dimensionamiento

Resumen

En años recientes, ha incrementado la implementación y el estudio de microrredes (MR). Su dimensionamiento depende de los datos de entrada (ej., demanda, microclima, costos y restricciones), por lo que la variación de uno o más de estos pueden modificar la solución óptima de la MR y su operación esperada. Tal variación se presenta debido al contexto económico, tecnológico o climático, por lo que, se propuso hacer un análisis de sensibilidad que caracterice su impacto. Con el fin de aportar en la aplicación del análisis de sensibilidad en proyectos de MR, el objetivo de este trabajo consistió en estudiar el impacto de siete variables de sensibilidad (irradiación solar, velocidad del viento, temperatura ambiente, estado de carga mínimo del banco de baterías, precio del combustible, tasa de descuento y tasa de inflación) sobre el dimensionamiento e indicadores económicos y operativos de una MR aislada para usuarios residenciales en un municipio rural de Colombia. El análisis se realizó a partir del uso de la herramienta HOMER Pro, siendo los principales indicadores analizados: costo presente neto, costo de energía, costo de capital, costo de operación y fracción renovable. Los resultados permitieron identificar que las variables más influyentes para el caso de estudio son: precio del combustible, tasa de inflación, tasa de descuento e irradiación solar; asimismo, apreció la utilidad de HOMER Pro para este tipo de análisis y la conveniencia de la representación gráfica para estudiar el impacto de las variables de sensibilidad. En conclusión, la variación de los datos de entrada influye en la factibilidad de resultados, como por ejemplo, el costo presente neto disminuye con el aumento del precio del combustible, la temperatura ambiente o la tasa de inflación, mientras que aumenta con la reducción del estado de carga mínimo, la irradiación solar o la tasa de descuento.

Biografía del autor/a

Jersson García-García, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, jersson2218419@correo.uis.edu.co

German Osma-Pinto*, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, gealosma@uis.edu.co

Referencias bibliográficas

M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Trans Industr Inform, vol. 15, no. 3, pp. 1238–1250, Mar. 2019, https://doi.org/10.1109/TII.2018.2881540

M. Sandelic, S. Peyghami, A. Sangwongwanich, and F. Blaabjerg, “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112127, May. 2022, https://doi.org/10.1016/j.rser.2022.112127

M. Debouza, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin, “Survey on microgrids with flexible boundaries: Strategies, applications, and future trends,” Electric Power Systems Research, vol. 205, p. 107765, Apr. 2022, https://doi.org/10.1016/j.epsr.2021.107765

V. Lavanya and N. S. Kumar, “A Review: Control Strategies for Power Quality Improvement in Microgrid,” International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 1–16, Mar. 2018, https://doi.org/10.20508/ijrer.v8i1.6643.g7290

K. M. Krishna, “Optimization analysis of Microgrid using HOMER - A case study,” in 2011 Annual IEEE India Conference, Dec. 2011, pp. 1–5. https://doi.org/10.1109/INDCON.2011.6139566

S. Fazal, E. Haque, M. Taufiqul, and A. Gargoom, “Grid integration impacts and control strategies for renewable based microgrid,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103069, Mar. 2023, https://doi.org/10.1016/j.seta.2023.103069

J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems,” Energy Convers Manag, vol. 199, p. 112027, Nov. 2019, https://doi.org/10.1016/j.enconman.2019.112027

R. Hidalgo-Leon et al., “Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies, vol. 15, no. 5, p. 1776, Feb. 2022, https://doi.org/10.3390/en15051776

M. Ur Rashid, I. Ullah, M. Mehran, M. N. R. Baharom, and F. Khan, “Techno-Economic Analysis of Grid-Connected Hybrid Renewable Energy System for Remote Areas Electrification Using Homer Pro,” Journal of Electrical Engineering & Technology, vol. 17, no. 2, pp. 981–997, Mar. 2022, https://doi.org/10.1007/s42835-021-00984-2

P. Arévalo, A. A. Eras-Almeida, A. Cano, F. Jurado, and M. A. Egido-Aguilera, “Planning of electrical energy for the Galapagos Islands using different renewable energy technologies,” Electric Power Systems Research, vol. 203, p. 107660, Feb. 2022, https://doi.org/10.1016/j.epsr.2021.107660

S. Vendoti, M. Muralidhar, and R. Kiranmayi, “Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software,” Environ Dev Sustain, vol. 23, no. 1, pp. 351–372, Jan. 2021, https://doi.org/10.1007/s10668-019-00583-2

M. N. Uddin, M. M. Biswas, and S. Nuruddin, “Techno-economic impacts of floating PV power generation for remote coastal regions,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101930, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101930

S. Ladide, A. EL Fathi, M. Bendaoud, H. Hihi, and K. Faitah, “Flexible design and assessment of a stand-alone hybrid renewable energy system: a case study Marrakech, Morocco,” International Journal of Renewable Energy Research, vol. 9, no. 4, pp. 2003–2022, Dec. 2019, https://doi.org/10.20508/ijrer.v9i4.9936.g7806

S. Sreenath, A. M. Azmi, and Z. A. M. Ismail, “Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis,” Energy Reports, vol. 9, supplement 1, pp. 711–719, Mar. 2023, https://doi.org/10.1016/j.egyr.2022.11.065

F. A. Barrozo Budes, G. Valencia Ochoa, L. G. Obregon, A. Arango-Manrique, and J. R. Núñez Álvarez, “Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia,” Energies , vol. 13, no. 7, p. 1662, Apr. 2020, https://doi.org/10.3390/en13071662

D. Restrepo, B. Restrepo-Cuestas, and A. Trejos, “Microgrid analysis using HOMER: A case study,” DYNA (Colombia), vol. 85, no. 207, pp. 129–134, Oct. 2018, http://doi.org/10.15446/dyna.v85n207.69375

A. F. Torres Ome, A. L. Paque Salazar, and F. Díaz Franco, “Arquitecturas híbridas para la evaluación económica de un sistema de energía eólico-solar a partir del análisis de las variables meteorológicas en la ciudad de Neiva,” Cina Research, vol. 2, no. 3, pp. 14–27, Jan. 2018. https://journals.uninavarra.edu.co/index.php/cinaresearch/article/view/134

S. Ferahtia, H. Rezk, M. A. Abdelkareem, and A. G. Olabi, “Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm,” Applied Energy, vol. 306, pp. 118069, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118069

M. M. A. Seedahmed, M. A. M. Ramli, H. R. E. H. Bouchekara, M. S. Shahriar, A. H. Milyani, and M. Rawa, “A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 7, pp. 5183–5202, Jul. 2022, https://doi.org/10.1016/j.aej.2021.10.041

M. M. A. Seedahmed et al., “Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 8, pp. 6523–6540, Aug. 2022, https://doi.org/10.1016/j.aej.2021.12.013

S. Kumar, R. Sharma, S. Srinivasa Murthy, P. Dutta, W. He, and J. Wang, “Thermal analysis and optimization of stand-alone microgrids with metal hydride based hydrogen storage,” Sustainable Energy Technologies and Assessments, vol. 52, no. PA, p. 102043, Aug. 2022, https://doi.org/10.1016/j.seta.2022.102043

H. Mohammadpourkarbasi and S. Sharples, “Appraising the life cycle costs of heating alternatives for an affordable low carbon retirement development,” Sustainable Energy Technologies and Assessments, vol. 49, Jul. 2021, p. 101693, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101693

D. A. Figueroa Guerra, J. F. Culqui Tipan, M. D. Núñez Verdezoto, and O. D. Cruz Panchi, “Modelamiento de un sistema fotovoltaico conectado a la red considerando la variación de irradiancia solar en Homer Pro,” Ingeniería Investigación y Desarrollo, vol. 22, no. 1, pp. 60–71, Jun. 2022, https://doi.org/10.19053/1900771X.v22.n1.2022.14456

O. Tang, J. Rehme, and P. Cerin, “Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?,” Energy, vol. 241, no. 3, p. 122906, Feb. 2022, https://doi.org/10.1016/j.energy.2021.122906

C. Klemm and F. Wiese, “Indicators for the optimization of sustainable urban energy systems based on energy system modeling,” Energy Sustain Soc, vol. 12, no. 3, pp. 1–20, Jan. 2022, https://doi.org/10.1186/s13705-021-00323-3

A. K. Podder et al., “Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation,” Sustainability, vol. 14, no. 1, p. 166, Dec. 2021, https://doi.org/10.3390/su14010166

M. F. Ishraque et al., “Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies,” Sustainability, vol. 13, no. 22, p. 12734, Nov. 2021, https://doi.org/10.3390/su132212734

A. al Wahedi and Y. Bicer, “Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar,” Energy, vol. 243, p. 123008, Mar. 2022, https://doi.org/10.1016/j.energy.2021.123008

A. I. Omar, N. M. Khattab, and S. H. E. Abdel Aleem, “Optimal strategy for transition into net-zero energy in educational buildings: A case study in El-Shorouk City, Egypt,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101701, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101701

M. S. Okundamiya, “Integration of photovoltaic and hydrogen fuel cell system for sustainable energy harvesting of a university ICT infrastructure with an irregular electric grid,” Energy Convers Manag, vol. 250, p. 114928, Dec. 2021, https://doi.org/10.1016/j.enconman.2021.114928

N. Majdi Nasab, J. Kilby, and L. Bakhtiaryfard, “Case Study of a Hybrid Wind and Tidal Turbines System with a Microgrid for Power Supply to a Remote Off-Grid Community in New Zealand,” Energies, vol. 14, no. 12, p. 3636, Jun. 2021, https://doi.org/10.3390/en14123636

C. Ghenai, T. Salameh, and A. Merabet, “Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region,” Int J Hydrogen Energy, vol. 45, no. 20, pp. 11460–11470, Apr. 2020, https://doi.org/10.1016/j.ijhydene.2018.05.110

K. Rakhsia, M. Shezad, R. Yudhistira, N. Ruiz, A. Prasad, and G. Ropero, “Polygeneration System Design for Filipinas.” 2020. https://www.diva-portal.org/smash/get/diva2:1555554/FULLTEXT01.pdf

M. Hunt and A. Benigni, “Sensitivity Analysis of Optimal Battery Sizing to Differences in Microgrid Use,” in 2019 International Conference on Clean Electrical Power (ICCEP), Jul. 2019, pp. 444–449. https://doi.org/10.1109/ICCEP.2019.8890179

S. A. Luthfi, Novizon, and R. Fahreza, “Cost of Energy Sensitivity Analysis of PV/Diesel with Hydro Pumped Storage for Mentawai Microgrid System,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–5. https://doi.org/10.1109/GUCON50781.2021.9573985

M. Nur Sabrina Noorpi, K. Meng, X. Li, Z. Yang Dong, and W. Kong, “Zonal Formation for Multiple Microgrids using Load Flow Sensitivity Analysis,” in 2018 International Conference on Power System Technology (POWERCON), Nov. 2018, pp. 358–363. https://doi.org/10.1109/POWERCON.2018.8601576

P. Jagadeesh, M. Mohamed Thameem Ansari, and M. Saiveerraju, “Optimal Power Management of an Educational Institution Using HOMER,” Journal of Electrical Engineering and Technology, vol. 16, no. 4, pp. 1793–1798, Jul. 2021, https://doi.org/10.1007/s42835-021-00713-9

M. A. A. Rahmat et al., “An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro,” Sustainability (Switzerland), vol. 14, no. 20, Oct. 2022, https://doi.org/10.3390/su142013684

G. K. Suman, J. M. Guerrero, and O. P. Roy, “Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach,” Sustain Cities Soc, vol. 67, p. 102723, Apr. 2021, https://doi.org/10.1016/j.scs.2021.102723

J. O. Oladigbolu, M. A. M. Ramli, and Y. A. Al-Turki, “Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria,” Sustainability, vol. 11, no. 18, p. 4959, Sep. 2019, https://doi.org/10.3390/su11184959

M. H. Jahangir and R. Cheraghi, “Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load,” Sustainable Energy Technologies and Assessments, vol. 42, p. 100895, Dec. 2020, https://doi.org/10.1016/j.seta.2020.100895

F. Eze, J. Ogola, R. Kivindu, M. Egbo, and C. Obi, “Technical and economic feasibility assessment of hybrid renewable energy system at Kenyan institutional building: A case study,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101939, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101939

S. Sharma et al., “Modeling and sensitivity analysis of grid-connected hybrid green microgrid system,” Ain Shams Engineering Journal, vol. 13, no. 4, p. 101679, Jun. 2022, https://doi.org/10.1016/j.asej.2021.101679

S. Sharma and Y. R. Sood, “Optimal planning and sensitivity analysis of green microgrid using various types of storage systems,” Wind Engineering, vol. 45, no. 4, pp. 939–952, Aug. 2021, https://doi.org/10.1177/0309524X20941475

P. Malik, M. Awasthi, and S. Sinha, “Techno-economic and environmental analysis of biomass-based hybrid energy systems: A case study of a Western Himalayan state in India,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101189, Jun. 2021, https://doi.org/10.1016/j.seta.2021.101189

X. Yang, S. Liu, L. Zhang, J. Su, and T. Ye, “Design and analysis of a renewable energy power system for shale oil exploitation using hierarchical optimization,” Energy, vol. 206, p. 118078, Sep. 2020, https://doi.org/10.1016/j.energy.2020.118078

A. Oulis Rousis, D. Tzelepis, I. Konstantelos, C. Booth, and G. Strbac, “Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application,” Inventions, vol. 3, no. 3, p. 55, Aug. 2018, https://doi.org/10.3390/inventions3030055

D. I. Papaioannou, C. N. Papadimitriou, A. L. Dimeas, E. I. Zountouridou, G. C. Kiokes, and N. D. Hatziargyriou, “Optimization & Sensitivity Analysis of Microgrids using HOMER software- A Case Study,” in MedPower 2014, pp. 1–7, Nov. 2014. https://doi.org/10.1049/cp.2014.1668

V. V. V. S. N. Murty and A. Kumar, “Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 929–940, Sep. 2020, https://doi.org/10.35833/MPCE.2020.000273

H. Masrur, H. O. R. Howlader, M. Elsayed Lotfy, K. R. Khan, J. M. Guerrero, and T. Senjyu, “Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh,” Sustainability, vol. 12, no. 7, p. 2880, Apr. 2020, https://doi.org/10.3390/su12072880

T. Khan, M. Waseem, H. A. Muqeet, M. M. Hussain, M. Yu, and A. Annuk, “3E analyses of battery-assisted photovoltaic-fuel cell energy system: Step towards green community,” Energy Reports, vol. 8, pp. 184–191, Dec. 2022, https://doi.org/10.1016/j.egyr.2022.10.393

I. W. Son, Y. Jeong, S. Son, J. H. Park, and J. I. Lee, “Techno-economic evaluation of solar-nuclear hybrid system for isolated grid,” Appl Energy, vol. 306, no. PA, p. 118046, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118046

R. Chaurasia, S. Gairola, and Y. Pal, “Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies,” Sustainable Energy Technologies and Assessments, vol. 53, no. PD, p. 102787, Oct. 2022, https://doi.org/10.1016/j.seta.2022.102787

Congreso de la República de Colombia, “Ley 1715 del 13 de mayo de 2014,” 2014. http://www.upme.gov.co/normatividad/nacional/2014/ley_1715_2014.pdf

Congreso de la República de Colombia, “Ley 2099 del 10 de julio de 2021,” 2021. https://dapre.presidencia.gov.co/normativa/normativa/LEY

HOMER Pro, “HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids,”, 2022. https://www.homerenergy.com/products/pro/index.html (accessed Jan. 26, 2023).

IDEAM, “Atlas Interactivo - Radiación IDEAM.”, Accessed: Sep. 27, 2022. http://atlas.ideam.gov.co/visorAtlasRadiacion.html

IDEAM, “Atlas Interactivo - Vientos - IDEAM.”, (accessed Sep. 27, 2022). http://atlas.ideam.gov.co/visorAtlasVientos.html

A. Singh, P. Baredar, and B. Gupta, “Computational Simulation & Optimization of a Solar, Fuel Cell and Biomass Hybrid Energy System Using HOMER Pro Software,” Procedia Eng, vol. 127, pp. 743–750, 2015, https://doi.org/10.1016/j.proeng.2015.11.408

M. Nurunnabi, N. K. Roy, E. Hossain, and H. R. Pota, “Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh,” IEEE Access, vol. 7, pp. 150120–150140, Oct. 2019, https://doi.org/10.1109/ACCESS.2019.2945937

J. R. Baral, S. R. Behera, and T. Kisku, “Design and Economic Optimization of Community Load Based Microgrid System Using HOMER Pro,” in 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Jul. 2022, pp. 1–5. https://doi.org/10.1109/ICICCSP53532.2022.9862479

M. Mehdi, N. Ammari, A. Alami Merrouni, H. El Gallassi, M. Dahmani, and A. Ghennioui, “An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations,” Renewable Energy, vol. 205, pp. 695–716, Mar. 2023, https://doi.org/10.1016/j.renene.2023.01.082

C. E. Tello-Argüelles, M. J. Espinosa-Trujillo, D. M. Medina Carril, “Evaluación del efecto de la radiación solar sobre la superficie de un sistema fotovoltaico,” in, ECORFAN, 2020, pp. 196–209. https://doi.org/10.35429/H.2020.5.196.209

S. A. Sadat, J. Faraji, M. Babaei, and A. Ketabi, “Techno‐economic comparative study of hybrid microgrids in eight climate zones of Iran,” Energy Sci Eng, vol. 8, no. 9, pp. 3004–3026, Sep. 2020, https://doi.org/10.1002/ese3.720

Cómo citar
[1]
J. García-García y G. Osma-Pinto, «Dimensionamiento y análisis de sensibilidad de una microrred aislada usando HOMER Pro», TecnoL., vol. 26, n.º 56, p. e2565, mar. 2023.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-03-22
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo