Implementación de una formulación analítica del LEMP para estimar el desempeño de líneas de distribución frente a rayos

  • Edison Soto Universidad Industrial de Santander
  • Ernesto Pérez Universidad Nacional de Colombia
Palabras clave: Rayos, tensiones inducidas por rayos, líneas de distribución, fórmula analítica, campo electromagnético, tasa de fallas

Resumen

Este artículo presenta la implementación de una formulación analítica para calcular el campo electromagnético producido por rayo (LEMP), asumiendo una forma de onda de la corriente tipo rampa plana y un modelo de línea de transmisión (TL) para la descarga de retorno. Se presenta el desarrollo de las expresiones para los dipolos imágenes necesarios para calcular el campo eléctrico vertical, el campo magnético azimutal y especialmente el campo eléctrico horizontal. Las expresiones para calcular la contribución de los dipolos fuentes se presentaron en una publicación previa de otros autores. La formulación completa se usó para calcular los campos electromagnéticos y las tensiones inducidas por rayo en una línea de distribución aérea típica. Los resultados fueron comparados con las fórmulas tradicionales para calcular el LEMP como la fórmula de Rubinstein y para calcular tensiones inducidas como la fórmula de Rusck mostrando errores menores al 1%. Si una forma de onda más compleja se usa como la fórmula de Heidler, se encuentran errores menores al 5%. Adicionalmente, la fórmula se empleó para calcular la tasa de fallas de una línea de distribución aérea para terrenos con conductividad finita. Se encontraron errores menores al 5% comparados con las obtenidas en el estándar IEEE 1410. De otro lado, el tiempo de cómputo requerido para la evaluación del desempeño ante rayos de líneas de distribución se reduce a la mitad cuando se usa la fórmula analítica.

Biografía del autor/a

Edison Soto, Universidad Industrial de Santander

PhD in Engineer, Msc in Electrical Engineer, Escuela de Ingeniería Eléctrica, Electrónica y de Telecomunicaciones

Ernesto Pérez, Universidad Nacional de Colombia

PhD in Engineer, Msc, in Electrical Engineer, Departamento de Energía Eléctrica y Automática

Referencias bibliográficas

[1] IEEE Power & Energy Society, IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines. New York, New York, USA: IEEE, 2011.
[2] A. Borghetti, C. A. Nucci, and M. Paolone, “An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and Its Comparison with the IEEE Std. 1410 Method,” IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 684–692, Jan. 2006.
[3] C. A. Nucci, F. Rachidi, M. V. Ianoz, and C. Mazzetti, “Lightning-induced voltages on overhead lines,” IEEE Trans. Electromagn. Compat., vol. 35, no. 1, pp. 75–86, 1993.
[4] E. Pérez and H. Torres, “Advances On Modeling And Experimentation Of Lightning Induced Voltages On Distribution Lines,” Universidad Nacional de Colombia, Bogota, 2006.
[5] M. Paolone et al., “Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 532–547, Aug. 2009.
[6] R. Thottappillil, J. Schoene, and M. A. Uman, “Return stroke transmission line model for stroke speed near and equal that of light,” Geophys. Res. Lett., vol. 28, no. 18, pp. 3593–3596, Sep. 2001.
[7] M. Rubinstein and M. A. Uman, “Methods for calculating the electromagnetic fields from a known source distribution: application to lightning,” IEEE Trans. Electromagn. Compat., vol. 31, no. 2, pp. 183–189, May 1989.
[8] Cé. F. Barbosa and J. O. S. Paulino, “An Approximate Time-Domain Formula for the Calculation of the Horizontal Electric Field from Lightning,” IEEE Trans. Electromagn. Compat., vol. 49, no. 3, pp. 593–601, Aug. 2007.
[9] F. Napolitano, “An Analytical Formulation of the Electromagnetic Field Generated by Lightning Return Strokes,” IEEE Trans. Electromagn. Compat., vol. 53, no. 1, pp. 108–113, Feb. 2011.
[10] M. A. Uman, D. K. McLain, and E. P. Krider, “The electromagnetic radiation from a finite antenna,” Am. J. Phys., vol. 43, no. 1, pp. 33–38, Jan. 1975.
[11] M. Rubinstein and M. A. Uman, “Transient electric and magnetic fields associated with establishing a finite electrostatic dipole, revisited,” IEEE Trans. Electromagn. Compat., vol. 33, no. 4, pp. 312–320, 1991.
[12] E. Pérez and E. Soto, “Yaluk Draw: Software especializado para análisis del desempeño de líneas de distribución ante impacto de rayos. Avances en Ingeniería Eléctrica,” Av. en Ing. Eléctrica, vol. 4, no. 1, pp. 1–8, 2013.
[13] C. A. Nucci, A. Borghetti, M. Paolone, P. Boselli, M. Bernardi, and S. Malgarotti, “Lightning-Induced Voltages on Overhead Distribution Lines: Theoretical and Experimental Investigation of Related Problems and their Impact on Power Quality,” in Cigré 2004 Session, 2004, pp. 1–10.
[14] S. Rusck, Induced Lightning Over-voltages on Power Transmission Lines with Special Reference to the Overvoltage Protection of Low-voltage Networks, vol. 120. Lindståhl, 1958.
[16] Cigre Sc33 Wg01, “Guide to procedures for estimating the lightning performance of transmission lines,” CIGRE Rep. 63, vol. 01,no. October, pp. 1–64, 1991.
[17] IEEE Working Group, “Calculating the lightning performance of distribution lines,” IEEE Trans. Power Deliv., vol. 5, no. 3, pp. 1408–1417, 1990.
[18] Working Group on Estimation Lightning Performance of Transmission Lines, “A Simplified Method for Estimating Lightning Performance of Transmission Lines,” IEEE Power Eng. Rev., no. 4, pp. 48–48, Apr. 1985.
Cómo citar
[1]
E. Soto y E. Pérez, «Implementación de una formulación analítica del LEMP para estimar el desempeño de líneas de distribución frente a rayos», TecnoL., vol. 21, n.º 42, pp. 51–62, may 2018.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2018-05-14
Sección
Artículos de investigación

Métricas