Artificial Intelligence and Desirable Futures: Visions of Scientific Researchers in Mexico

Keywords: STS studies, technoscientific development, sociotechnical imaginaries, artificial intelligence, social utility of knowledge

Abstract

In Mexico, the lack of public policies, regulations, and a national strategy has left Artificial Intelligence (ai) in a phase of interpretative flexibility, where collectively shaped visions of its future play a key role in its stabilization. Against this backdrop, this study examines the future visions of ai held by researchers affiliated with two major Mexican research centers. To do so, a qualitative approach was employed, drawing on 25 semi-structured interviews and grounded in the discursive nature of the motivations guiding scientific practice. The findings reveal that these visions vary not only according to whether research is oriented toward basic or applied knowledge, but also depending on the institutional setting in which it takes place. Moreover, the study demonstrates that, in Mexico, future visions of ai are configured as niche strategies aimed at social utility, in contrast to global corporate imaginaries focused on disruption and productivity. It also shows that the vision of ai as a tool for technoscientific development is limited by the absence of a coordinated strategy and public policies. In conclusion, the paper outlines science policy actions that could strengthen collaboration among actors and support the development of low-cost computational solutions.

Author Biography

Gabriela Elisa Sued, Universidad Nacional Autónoma de México

Mexico City, Mexico, gabriela.sued@iimas.unam.mx

References

Bareis, J., y Katzenbach, C. (2022). Talking AI into Being: The Narratives and Imaginaries of National AI Strategies and Their Performative Politics. Science, Technology & Human Values, 47(5), 855-881. https://doi.org/10.1177/01622439211030007

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S. von, Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., … Liang, P. (2022). On the Opportunities and Risks of Foundation Models. Center for Research on Foundation Models (CRFM), Stanford Institute for Human-Centered Artificial Intelligence (HAI), y Stanford University. https://doi.org/10.48550/arXiv.2108.07258

Bortz, G., Gázquez, A., y Santos, G. M. (2022). Conocimientos, utilidad social y políticas públicas para la inclusión y sustentabilidad: Redes Territoriales Participativas como nueva forma de gobernanza. Redes. Revista de Estudios Sociales de la Ciencia y la Tecnología, 28(54), 1-53. https://doi.org/10.48160/18517072re54.143

Chavez, H., y Vizuete-Sandoval, D. (2025). Widening the divide, reloading dependency: The political economy of data and AI capability building in Latin America. Globalizations, 1-23. https://doi.org/10.1080/14747731.2024.2441625

Elish, M., y boyd, d. (2018). Situating methods in the magic of Big Data and AI. Communication Monographs, 85(1), 57-80. https://doi.org/10.1080/03637751.2017.1375130

Hager, G. D., Drobnis, A., Fang, F., Ghani, R., Greenwald, A., Lyons, T., Parkes, D. C., Schultz, J., Saria, S., Smith, S. F., y Tambe, M. (2017). Artificial Intelligence for Social Good. Computing Community Consortium. https://doi.org/10.48550/arXiv.1901.05406

Hilgartner, S. (2015). Capturing the Imaginary: Vanguards, visions, and the synthetic biology revolution. En S. Hilgartner, C. Miller, y R. Hagendijk (eds.), Science and Democracy: Making Knowledge and Making Power in the Biosciences and Beyond (pp. 33-55). Routledge.

Jasanoff, S. (2015). Future Imperfect: Science, Technology, and the Imaginations of Modernity. En S. Jasanoff, y S. H. Kim (eds.), Dreamscapes of Modernity. Sociotechnical Imaginaries and the Fabrication of Power (pp. 1-30). Chicago University Press.

Jasanoff, S., y Kim, S. H. (2009). Containing the Atom: Sociotechnical Imaginaries and Nuclear Power in the United States and South Korea. Minerva, 47(2), 119-146. https://doi.org/10.1007/s11024-009-9124-4

Kaplan, A., y Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004

Kreimer, P. (2023). Techno-Scientific Promises, Disciplinary Fields, and Social Issues in Peripheral Contexts. Science as Culture, 32(1), 83-108. https://doi.org/10.1080/09505431.2022.2101918

Nayak, B. S., y Walton, N. (2024). Political Economy of Artificial Intelligence: Critical Reflections on Big Data Market, Economic Development and Data Society. Palgrave Macmillan. https://doi.org/10.1007/978-3-031-62308-0

Nowotny, H., Scott, P., y Gibbons, M. (2003). “Mode 2” Revisited: The New Production of Knowledge. Minerva, 41(3), 179-194. https://www.jstor.org/stable/41821245

Rampin, R. (2018). Taguette [software]. https://gitlab.com/remram44/taguette

Red Iberoamericana de Indicadores de Ciencia y Tecnología. (2023). El estado de la ciencia. Principales Indicadores de Ciencia y Tecnología Iberoamericanos / Interamericanos 2023. RICyT, Organización de Estados Iberoamericanos (OEI), y Unesco. https://www.ricyt.org/wp-content/uploads/2023/12/EL-ESTADO-DE-LA-CIENCIA-2023.pdf

Richter, V., Katzenbach, C., y Schäfer, M. (2023). Imaginaries of Artificial Intelligence. En S. Lindgren (ed.), Critical Studies of Artificial Intelligence (pp. 209-223). Edward Elgar.

Schot, J., y Geels, F. W. (2007). Niches in evolutionary theories of technical change. Journal of Evolutionary Economics, 17(5), 605-622. https://doi.org/10.1007/s00191-007-0057-5

Sued, G. E. (2024). La producción científica mexicana en Inteligencia Artificial: Un análisis bibliométrico. Investigación Bibliotecológica: archivonomía, bibliotecología e información, 38(100), 87-105. https://doi.org/10.22201/iibi.24488321xe.2024.100.58893

Wang, W., y Downey, J. (2025). Mapping the sociotechnical imaginaries of generative AI in UK, US, Chinese and Indian newspapers. Public Understanding of Science, 1-19. https://doi.org/10.1177/09636625251328518

Weber, J., y Prietl, B. (2021). AI in the age of technoscience. On the rise of data driven AI and its episteme ontological foundations. En A. Elliott (ed.), The Routledge Social Science Handbook of Artificial Intelligence (pp. 58-73). Routledge.

How to Cite
Sued, G. E. (2025). Artificial Intelligence and Desirable Futures: Visions of Scientific Researchers in Mexico. Trilogía Ciencia Tecnología Sociedad, 17(36), e3568. https://doi.org/10.22430/21457778.3568

Downloads

Download data is not yet available.
Published
2025-08-25
Section
Research Articles
Crossref Cited-by logo
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Funding data

Some similar items: