Experimental Analysis of the Performance of a PV System with a Centralized Inverter and Microinverters: A Study Case in Manizales

Keywords: Non-conventional sources, renewable energy, photovoltaic array, solar radiation, precipitation


Generating electricity in an environment-friendly manner is a key factor for the economic and social growth of any country. Recently, the installation of PV generation systems has increased, although their performance depends on the location and is affected by multiple environmental parameters, such as solar radiation level, temperature, and precipitation. This work presents an experimental analysis, in terms of generated power, of a PV system installed in Manizales using (a) a centralized inverter and (b) microinverters. Manizales (2150 m a.s.l.; average temperature, 16.4 °C; and annual precipitation, 1878 mm) has historically presented two rainy seasons with high levels of cloudiness in April–June and October–December, and two seasons with minimum rains in January–March and July–September. For this experiment, a PV generation system was implemented using six Hybrytec solar panels ranging up to 270 Watts per panel and two monitoring systems: (i) Wifi–Box® for the PV array with a centralized inverter and (ii) EnvoyTM for the PV array with microinverters. The authors employed environmental parameters collected at the meteorological station La Nubia, located in the surroundings of the solar power system, and data gathered by the PV monitoring systems between July 2018 and May 2019. Despite the high levels of monthly accumulated precipitation (between 71 mm and 262.2 mm) and cloudiness (cloudy and mostly cloudy 76 % of the time) in the area, the PV array generated 16.5 % more energy with the microinverters than with the centralized inverter.

Author Biographies

Claudia Lucía Cortés Cortés*, Español

MSc. en Automatización Industrial, Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Manizales–Colombia, clcortesc@unal.edu.co

Gloria Stephany Gómez Gómez, Universidad Nacional de Colombia, Colombia

Estudiante Ingeniería Electrónica, Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Manizales– Colombia, gsgomezg@unal.edu.co

Felipe Betancur Londoño, Universidad Nacional de Colombia

Estudiante Ingeniería Eléctrica, Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Manizales–Colombia, fbetancurl@unal.edu.co

Sandra Ximena Carvajal Quintero, Universidad Nacional de Colombia, Colombia

PhD en Ingeniería Línea Automática, Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Manizales–Colombia, sxcarvajalq@unal.edu.co

Neil Guerrero González, Universidad Nacional de Colombia, Colombia

PhD. en Fotónica, Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Manizales–Colombia, nguerrerog@unal.edu.co


J. D. Marín-Jiménez, S. X. Carvajal- Quintero, y J. M. Guerrero, “Island operation

capability in the Colombian electrical market: a promising ancillary service of distributed energy resources,” TecnoLógicas, vol. 21, no. 42, pp. 169–185, May. 2018. https://doi.org/10.22430/22565337.786

A. G. Peralta-Sevilla y F. O. Amaya- Fernández, “Evolución de las redes eléctricas hacia Smart Grid en países de la Región Andina,” Educ. en Ing., vol. 8, no. 15, pp. 48-61, Jun. 2013. Disponible en: https://educacioneningenieria.org/index.php/edi/article/view/285

Y. A. Montoya-Mendoza, E. J. Ramírez, T. P. Pérez-Di Santis, L. M. Rujano-Molina, y N. A. Pérez-García, “Estado del arte de smart grid: parte I” Ing. al Día, vol. 2, no. 1, pp. 87–107, Jan. 2016. Disponible en: http://revista.unisinu.edu.co/revista/index.php/ingenieriaaldia/article/view/54

Electric Power Research Institute, “Smart Grid Resource Center,” 2011. Disponible en: https://smartgrid.epri.com/Index.aspx

Unidad de Planeación Minero Energética - UPME e Instituto de Hidrología, Meteorología y Estudio Ambientales “Atlas de Radiación Solar de Colombia,” Ministerio de Minas y Energía - República de Colombia, Colombia, 2015. Disponible en: http://www.ideam.gov.co/documents/21021/21129/.../2a207e33-fe43-4aa3-930d-70ba60b10d57

Procolombia, “Colombia y su potencial en fuentes de energía renovables,” Colombia, 2018. Disponible en: https://www.inviertaencolombia.com.co/noticias/1197-colombia-y-su-potencial-en-fuentes-de-energia-renovables.html

Consejo Privado de Competitividad, “Informe Nacional de competitividad 2018-2019”. Bogotá, 2018. Disponible en: https://compite.com.co/wp-content/uploads/2018/10/CPC_INC_2018-2019_Web.pdf

Instituto de Hidrología Meteorologíay Estudios Ambientales - IDEAM, “Atlas Interactivo - Radiación IDEAM.” 2005. Disponible en: http://atlas.ideam.gov.co/visorAtlasRadiacion.html

J. Gómez-Ramírez, J. D. Murcia-Murcia, y I. Cabeza-Rojas, “La Energía Solar Fotovoltaica en Colombia: potenciales, antecedentes y perspectivas,” Universidad Santo Tomás, Bogotá, pp. 1-19. Oct. 2017. Disponible en: https://repository.usta.edu.co/handle/11634/10312

Unidad de Planeación Minero Energética - UPME, “Plan de Expansión de Referencia Generación – Transmisión 2017 – 2031,” Ministerio de Minas y Energía - República de Colombia, Colombia. Disponible en: http://www1.upme.gov.co/Energia_electrica/Plan_GT_2017_2031_PREL.pdf

J. Jiménez, J. E. Cardona, y S. X. Carvajal, “Location and optimal sizing of photovoltaic sources in an isolated mini-grid,” TecnoLógicas, vol. 22, no. 44, pp. 61–80, Jan. 2019. https://doi.org/10.22430/22565337.1182

A. Woyte, M. Richter, D. Moser, S. Mau, N. Reich, y U. Jahn, “Monitoring of Photovoltaic Systems: Good Practices and Systematic Analysis,” en 28th European PV Solar Energy Conference and Exhibition, Paris, 2013, pp. 1–9. Disponible en: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/conference-paper/28-eupvsec-2013/Woyte.pdf

M. Ejgar y B. Momin, “Solar plant monitoring system: A review,” en 2017 International Conference on Computing Methodologies and Communication (ICCMC), Erode, 2017, pp. 1142–1144. https://doi.org/10.1109/ICCMC.2017.8282652

R. A. Messenger y J. Ventre, Photovoltaic Systems Engineering, 3a ed., Abingdon: Taylor & Francis Group, 2010. Disponible en: https://www.crcpress.com/Photovoltaic-Systems-Engineering/Messenger-Abtahi/p/book/9781498772778

K. Chari y A. Dessai, “Design of low power solar micro inverter for home application,” Multidiscip. J. Res. Eng. Technol., pp. 74–79, Jun. 2015. Disponible en: http://www.mjret.in/NCPE/P8-6-2015.pdf

R. Darussalam, R. I. Pramana, y A. Rajani, “Experimental investigation of serial parallel and total-cross-tied configuration photovoltaic under partial shading conditions,” en 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Jakarta, 2017, pp. 140 -144. https://doi.org/10.1109/ICSEEA.2017.8267699

F. Muhammad, S. Sdeeq, y A. Ameen, “Effect of Series and Parallel Shading on the Photovoltaic Performance of Silicon Based Solar Panels,” J. Technol. Innov. Renew. Energy, vol. 4, no. 4, pp. 152–156, Dec. 2015. https://doi.org/10.6000/1929-6002.2015.04.04.5

D. Murillo-Yarce, A. Alzate-Gómez, y A. Escobar-Mejía, “Análisis comparativo del control predictivo de corriente en convertidores VSI empleados en la conexión a red de energías renovables,” TecnoLógicas, vol. 21, no. 41, pp. 45–62, 2018. https://doi.org/10.22430/22565337.714

M. H. Rashid, Electrónica de Potencia: circuitos, dispositivos y aplicaciones, 2ª ed. Naucalpan de Juárez: Prentice Hall Hispanoamericana S.A, 1995.

Solarpraxis, “Inverter and PV System Technology,” Solarpraxis, 2011.

Disponible en: https://www.conduct.nl/wp-content/uploads/2015/01/InverterandPVSystemTechnology.pdf

Solar Edge, “Performance of PV Topologies under Shaded Conditions,” 2013.

Disponible en: https://www.solaredge.com/sites/default/files/performance_of_pv_topologies_under_shaded_conditions.pdf

P. Gevorkian, Solar Power Generation Problems, Solutions, and Monitoring, Cambridge: Cambridge University Press, 2016. https://doi.org/10.1017/CBO9781316341414

H. A. Sher y K. E. Addoweesh, “Micro-inverters — Promising solutions in solar photovoltaics”, Energy Sustain. Dev., vol. 16, no. 4, pp. 389–400, Dec. 2012. https://doi.org/10.1016/j.esd.2012.10.002

D. M. Scholten, N. Ertugrul, and W. L. Soong, “Micro-inverters in small scale PV systems: A review and future directions”, in 2013 Australasian Universities Power Engineering Conference (AUPEC), Hobart, 2013, pp. 1–6.


GWL/Power Group, “GridFree Micro AC Direct Inverter DC-AC 230V”, República Checa, 2017. Disponible en: https://www.ev-power.eu/docs/pdf/GWL/GWL-MAC230A-Spec.pdf

I. F. Moran, J. A. Restrepo, M. L. Orozco-Gutierrez, y J. M. Ramirez-Scarpetta, “Quasi-switched inverter using space vector pulse width modulation with triangular comparison for photovoltaic applications,” TecnoLógicas, vol. 21, no. 42, pp. 95–110, May. 2018. https://doi.org/10.22430/22565337.781

T. Esram y P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion., vol. 22, no. 2, pp. 439–449, Jun. 2007.


Y. J. Mark Tung, A. Patrick Hu, y N. Kumar Nair, “Evaluation of Micro Controller Based Maximum Power Point Tracking Methods Using dSPACE Platform”, en Australian University Power Engineering Conference, Melborne, 2006. Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=

D. P. Hohm y M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms,” Progress in photovoltaics: research and application, vol. 11, pp. 47–62, Nov. 2002. https://doi.org/10.1002/pip.459

IEC System for Conformity Testing and Certification of Electrical Equipment, "Testing and measuring equipment/allowed subcontracting, Photovoltaic systems –Power conditioners–Procedure for measuring efficiency", IEC 61683:199, 2017. Disponible en: https://www.iecee.org./

European Standards, CSN 50530 Overall efficiency of grid connected photovoltaic inverters, 2010. Disponible en: https://www.iecee.org./

The Institute of Electrical and Electronics Engineers, IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, New York, Feb. 2003.


Componentes de acumulación, conversión y gestión de energía de sistemas fotovoltáicos. Calificación del diseño y ensayos ambientales, Norma NTC 5627:2008, 2008. Disponible en: https://www.icontec.org/rules/componentes-de-acumulacion-conversion-y-gestion-de-energia-de-sistemas-fotovoltaicos-calificacion-del-diseno-y-ensayos-ambientales/

Artefactos electrodomésticos y similares. Seguridad. Parte 1: requisitos generales, Norma NTC 2183:2014, 2014. Disponible en: https://www.icontec.org/rules/artefactos-electrodomesticos-y-similares-seguridad-parte-1-requisitos-generales/

A. Banshwar, N. K. Sharma, Y. R. Sood, and R. Shrivastava, “An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets”, Renewable and Sustainable Energy Reviews, vol. 90, pp. 774–801, Jul. 2018. https://doi.org/10.1016/j.rser.2018.03.085

M. Braun et al., “Is the distribution grid ready to accept large-scale photovoltaic deployment? State of the art, progress, and future prospects,” en 26th European Photovoltaic Solar Energy Conference and Exhibition (26th EU PVSEC), Hamburg, 2012, pp. 681–697. https://doi.org/10.1002/pip.1204

EvoEnergy, “Technical Requirements for the Connection of Inverter Energy (IES) Up To 30kVA,” 2018.

TDK Components The Customer Magazine of TDK- EPC Corporation, “Effective protection of valuable solar installations,” 2011. Disponible en: https://www.mouser.com/pdfdocs/Solar_Epcos_Effective_Protection_Of_Valuable.pdf

ABB solutions for solar energy- Low Voltage Productos, “Low Voltage Products - Solutions for solar energy,” 2014. Disponible en: https://new.abb.com/docs/librariesprovider20/campaigns-files/solutions-for-solar-energy-.pdf

J. Flicker y J. Johnson, “Photovoltaic ground fault detection recommendations for array safety and operation,” Sol. Energy, vol. 140, pp. 34–50, Dec. 2016.


Comisión de Integración Energética Regional, “Guía para el uso de la Norma IEEE 1547,” CIER, 2016. Disponible en: https://www.cier.org/es-uy/Lists/Informes/Resumen%20IEEE%201547%20VF%202016.pdf

S. B. Kjaer, J. K. Pedersen, y F. Blaabjerg, “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292–1306, Sep. 2005.


Hybrytech, “YGE 60 Cell Series 2 HSF Smart,” 2017. Disponible en: https://es.enfsolar.com/pv/panel-datasheet/crystalline/30691

Instituto de Estudios Ambientales - IDEA, “Sistema Integrado de Monitoreo Ambiental de Caldas – SIMAC. Red de estaciones meteorológicas e hidrometeorológicas automáticas de Manizales. Estaciones para la gestión del riesgo ante desastres por deslizamientos. Primera Parte,” Boletín Ambiental No. 145, Manizales, 2018.

Disponible en: http://idea.manizales.unal.edu.co/publicaciones/boletines_ambientales/boletin145.pdf

Unimedios, “La U.N. alerta sobre nivel de lluvias en Manizales,” Agencia de Noticias UN, Manizales, Oct. 2018. Disponible en: https://agenciadenoticias.unal.edu.co/detalle/article/la-un-alerta-sobre-nivel-de-lluvias-en-manizales.html

Instituto de Estudios Ambientales - IDEA, “Sistema Integrado de Monitoreo Ambiental de Caldas – SIMAC. Red de estaciones meteorológicas e hidrometeorológicas automáticas de Manizales. Estaciones para la gestión del riesgo ante desastres por deslizamientos. Segunda Parte,” Boletín Ambiental No. 146, Colombia, 2018.

Disponible en: http://idea.manizales.unal.edu.co/publicaciones/boletines_ambientales/boletin146.pdf

J. Romero, “Análisis del funcionamiento de paneles fotovoltaicos y su utilización en las regiones de la costa y sierra del Ecuador. Caso de estudio: Biblioteca Pompeu Fabra de Mataró,” (Tesis de maestría), Universidad Politècnica de Catalunya, Barcelona, 2015.

Disponible en: https://upcommons.upc.edu/handle/2099.1/26396

Enphase Energy, “Microinversor M250 de Enphase”, 2016. Disponible en: https://enphase.com/sites/default/files/downloads/support/M250-DS-ES.pdf

Hersic International, “Energía Sostenible Con Calidad”, 2018. Disponible en: https://docs.wixstatic.com/ugd/b3a787_c7ba51c5839643ffa816d66713889fe7.pdf

Inc Enphase Energy, “Enphase MyEnlighten Web Application,” 2019.

Disponible en: https://enphase.com/en-us/products-and-services/enlighten-and-apps#myenlighten.

F. S. Gazis, G. A. Vokas, I. J. Katsimardou, y J. K. Kaldelis, “Micro inverters for PV plants compared to the ordinary string or central inverters,” en Conference for International Synergy in Energy, Environment, Tourism and contribution of Information Technology in Science, Economy, Society and Education, Grece, 2013. pp. 1-9. Disponible en: https://www.academia.edu/26073986/Micro_inverters_for_PV_plants_compared_to_the_ordinary_string_or_central_inverters

M. Johns, H.-P. Le, y M. Seeman, “Grid-Connected Solar Electronics,” EE-290N-3-Contemporary Energy Issues, no. Contemporary Energy Issues, pp. 1–12, 2009. Diponible en: https://www.academia.edu/634574/Grid-Connected_Solar_Electronics

Instituto de Estudios Ambientales - IDEAM, “Reporte Meteorológico,” 2019.

Disponible en: http://www.ideam.gov.co/web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/84129627

A. C. Cortés Cortés, “Análisis de la variabilidad espacial y temporal de la precipitación en una ciudad de media montaña andina. Caso de estudio: Manizales” (Tesis de maestría). Universidad Nacional de Colombia, Departamento de Arquitectura y Urbanismo. Manizales - Colombia, 2010. Disponible en: http://bdigital.unal.edu.co/3584/1/anacristinacortescortes.2010.pdf

Alcaldía de Manizales, “Plan de Ordenamiento Territorial de Manizales 2017 - 2031,” 2017. Disponible en: https://manizales.gov.co/plan-de-ordenamiento-territorial-2017-2031/

Federación Nacional de Cafeteros de Colombia y Centro Nacional de Investigaciones de Café “Pedro Uribe Mejía” CENICAFÉ, “Anuario Meteorológico Cafetero 2017”. Chinchiná: FNC y CENICAFÉ, 2018.

R. Boukenoui, R. Bradai, A. Mellit, M. Ghanes, y H. Salhi, “Comparative analysis of P&O, modified hill climbing-FLC, and adaptive P&O-FLC MPPTs for microgrid standalone PV system”, en 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, 2015. pp. 1095–1099.


K. L. Lian, J. H. Jhang, and y I. S. Tian, “A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization”, IEEE Journal of Photovoltaics, vol. 4, no. 2,

pp. 626–633, Jan. 2014. https://doi.org/10.1109/JPHOTOV.2013.2297513

O. Guenounou, B. Dahhou y F. Chabour, “Adaptive fuzzy controller based MPPT for photovoltaic systems,” Energy Conversion and Management., vol. 78, pp. 843–850,

Feb. 2014. https://doi.org/10.1016/j.enconman.2013.07.093

A. F. Murtaza, M. Chiaberge, F. Spertino, U. Tabrez Shami, D. Boero y M. De Giuseppe, “MPPT technique based on improved evaluation of photovoltaic parameters for uniformly irradiated photovoltaic array,” Electric Power Systems Research, vol. 145, pp. 248–263, Apr. 2017. https://doi.org/10.1016/j.epsr.2016.12.030

P. Kofinas, S. Doltsinis, A. I. Dounis y G. A. Vouros, “A reinforcement learning approach for MPPT control method of photovoltaic sources,” Renewable Energy, vol. 108, pp. 461–473, Aug. 2017.


Instituto de Estudios Ambientales - IDEA, Universidad Nacional de Colombia “Boletín climatológico Trimestral - tercer trimestre de 2018,” Sistema integrado de monitoreo ambiental de caldas -Simac, Colombia, Boletin, 2018. Disponible en: https://www.aguasdemanizales.com.co/Portals/Aguas2016/Ambiental/Reporte_metereol%C3%B3gico/Bolet%C3%ADn_climatol%C3%B3gico_julio_septiembre_2018.pdf?ver=2018-11-09-140753-123

How to Cite
Cortés Cortés, C. L., Gómez Gómez, G. S., Betancur Londoño, F., Carvajal Quintero, S. X., & Guerrero González, N. (2020). Experimental Analysis of the Performance of a PV System with a Centralized Inverter and Microinverters: A Study Case in Manizales. TecnoLógicas, 23(47), 1-21. https://doi.org/10.22430/22565337.1403


Download data is not yet available.
Research Papers