Formwork Layout for Walls Using Modular Formworks

Keywords: Formwork Layout, Rectilinear Walls, Constraint Programming, Constraint Optimization Problem, Change-making problem


Concrete is one of the most versatile materials used in construction. At present, it is extensively employed in the industry as it can be molded in almost any shape through rigid molds called formwork. The arrangement of the different elements that compose the formwork and its associated restrictions pose interesting computational challenges that directly impact the construction industry. In this article, we propose the implementation of a model with constraints that generates a formwork layout for rectilinear walls using modular forms. This approach is based on the decomposition of walls and their representation as instances of the change-making problem. For that purpose, we used the concept of oriented rectangular decomposition to simplify the problem input and address the solution as a Constraint Optimization Problem (COP). The experiments with test inputs provided solutions in less than 200 seconds, thus offering a practical and efficient approach to the complex task of formwork design.


Author Biographies

Carlos A. Martínez*, Universidad del Valle, Colombia

MSc. en Ingeniería, Grupo de Investigación AVISPA, Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali-Colombia,

Juan F. Díaz, Universidad del Valle, Colombia

PhD. en Informática, Grupo de Investigación AVISPA, Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali-Colombia,

Robinson Duque, Universidad del Valle, Colombia

PhD en Ingeniería Eléctrica, Grupo de Investigación AVISPA, Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Cali-Colombia,


D. Pearson, “A polynomial-time algorithm for the change-making problem,” Oper. Res. Lett., vol. 33, no. 3, pp. 231–234, May. 2005.

A. Caprara y M. Monaci, “Bidimensional packing by bilinear programming,” Math. Program., vol 118, no. 1, pp 75-108 Apr. 2009.

V. Soltan y A. Gorpinevich, “Minimum dissection of a rectilinear polygon with arbitrary holes into rectangles,” Discrete Comput. Geom., vol. 9, no. 1, pp. 57–79, Jan. 1993.

F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming, New York: Elsevier, 2006.

K. Apt, Principles of Constraint Programming, Amsterdam: Cambridge University Press, 2003.

S. Biruk y P. Jaskowski, “Optimization of Vertical Formwork Layout Plans Using Mixed Integer Linear Programming,” Int. J. Civ. Eng., vol. 15, no. 2, pp. 125–133, Mar. 2017.

A. Hanna, Concrete Formwork Systems, 1st ed. Boca Raton: CRC Press, 1998.

L. M. Vélez, “Permeabilidad y porosidad en concreto,” TecnoLógicas, no. 25, pp. 169-187, Dec. 2010.

J. F. Arango-Londoño, “Diseño de pavimentos reforzados: evaluación de factores de carga y subresistencia por el método LRFD,” TecnoLógicas, no. 14, pp. 89-103, Jul. 2005.

J. F. Arango-Londoño, “Adoquines en concreto: propiedades físico-mecánicas y sus correlaciones,” TecnoLógicas, no. 16, p. 121-137, Jun. 2006.

M. Kapp y G. Girmscheid, “Empirical study reveals deficits in the choice of formwork,” en Construction in the XXI century, vol. 39. Zurich: Edizioni Scientifiche Italiane, 2006, pp. 172–173.

A. M. Jarkas, “The impacts of buildability factors on formwork labour productivity of columns,” J. Civ. Eng. Manag., vol. 16, no. 4, pp. 471–483, Feb. 2010.

S. U. Dikmen y M. Sonmez, “An artificial neural networks model for the estimation of formwork labour” J. Civ. Eng. Manag., vol. 17, no. 3, pp. 340–347, Sep. 2011.

R. H. Bordner et al., “Guide to Formwork for Concrete,” ACI Committee 347, United States, Reporte técnico, ACI 347R-14, Jul. 2001. Disponible en:

D. Lee, H. Lim, T. Kim, H. Cho, y K. I. Kang, “A Formwork Layout Model Based on Genetic Algorithm,” en The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014), Sidney, 2014, pp. 474–479.

H. Al-Tabtabai, A. P. Alex, y R. James, “Slab formwork design using genetic algorithm,” Durab. Build. Mater. Components, pp. 2407–2418, 1999. Disponible en:

R. Ghowiba, "Horizontal Formwork Design Optimization and Selection System Using Genetic Algorithms". (Tesis maestría). School of Science and Engineering. The American University in Cairo, Cairo, 2016. Disponible en:

T. Benoist, “Towards optimal formwork pairing on construction sites,” RAIRO-Operations Res., vol. 41, no. 4, pp. 381–398, Oct. 2007.

T. Benoist, A. Jeanjean, y P. Molin, “Minimum Formwork Stock problem on residential buildings construction sites,” 4OR - A Q. J. Oper. Res., vol. 7, pp. 275–288, Oct. 2009.

Biruk, S. “Minimizing wall formwork cost in residential building construction”. International Journal of Arts & Sciences, vol. 6, no 3, pp. 355-362, 2013. Disponible en:

MiniZinc (2014) Monash University and Data61 Csiro. Disponible en:

Gecode (2016) Team. Gecode: Generic constraint development environment, 2016. Disponible en:

Coin-or/Cbc: Versión 2.9.9 (2018).

The Haifa Solvers Suite (2016). Technion Israel Institute of Technology. Disponible en:

FORSA. Catálogo técnico FORSA Acero. FORSA S.A. (2013). Disponible en:

How to Cite
Martínez, C. A., Díaz, J. F., & Duque, R. (2019). Formwork Layout for Walls Using Modular Formworks. TecnoLógicas, 22, 1-18.


Download data is not yet available.
Research Papers