Case study of ethanol-water distillation in continuous and discontinuous operation and its simulation with cubic equations of state and activity models

Keywords: Cubic equation of state, Vapour-Liquid Equilibrium, Simulation, Distillation tower, ethanol-water

Abstract

  Simulating a distillation column represents an interesting problem because of the complex dynamics of the system, the thermodynamic interactions in each tray, and the interaction between internal and external currents. This paper evaluates the operation and simulation of a continuous distillation tower (CDT) and a discontinuous distillation tower (DDT). Such simulation was performed using the McCabe–Thiele and rigorous methods as well as the Forero-Velazquez-Huron-Vidal (FVHV) modified cubic state equation (first proposed by Peng–Robinson) and the No-Random-Two-Liquid (NRTL) activity model. The simulation predicted the composition of the distillate and the bottoms, the number of trays, and the feeding stage. The continuous distillation tower had 9 actual equilibrium trays; but the FVHV equation calculated 8 trays; and the NRTL model, 9. With both models, we found that the optimal number of feeding trays was 7. In the case of the DDT, we carried out two tests (with and without ®™ type packaging). The FVHV equation offers many advantages since all the parameters of pure substances are generalized in terms of thermodynamic properties at the critical point, and it rightly represents polar as well as non-polar substances. Nevertheless, the equation NRTL presented a better fit with the composition of distillate, but, regarding its volume, no model represented the experimental trend. A Microsoft Excel® add-in called ® was used to solve the system of equations, and Euler’s was implemented as an iterative method to solve the equations in the discontinuous distillation tower.

Author Biographies

Zulamita Zapata Benabithe *, Universidad Pontificia Bolivariana, Colombia

PhD. en Ingeniería, Grupo de Energía y Termodinámica, Universidad Pontificia Bolivariana, Medellín-Colombia, zulamita.zapata@upb.edu.co

Diana Vanegas , Universidad Pontificia Bolivariana, Colombia

PhD. en Ingeniería, Grupo Pulpa y Papel, Universidad Pontificia Bolivariana, Medellín-Colombia, diana.vanegas@upb.edu.co

Juan Camilo Rendon Montoya, Universidad Pontificia Bolivariana, Colombia

Estudiante de Ingeniería Química, Semillero Termo fluidos y Conversión de la Energía, Universidad Pontificia Bolivariana, Medellín-Colombia, juan.rendonm@upb.edu.co

Jorge A. Velásquez , Universidad Pontificia Bolivariana, Colombia

PhD. en Ingeniería Química, Grupo Pulpa y Papel, Universidad Pontificia Bolivariana, Medellín-Colombia, jorge.velasquezj@upb.edu.co

References

C. Enweremadu; A. Waheed; J. Ojediran, “Parametric study of an ethanol–water distillation column with direct vapour recompression heat pump,” Energy for Sustainable Development, vol. 13, no. 2, pp. 96–105, Jun. 2009. https://doi.org/10.1016/j.esd.2009.05.001

W. Orozco, “Destilación al Vacío de Etanol usando Bomba Chorro,” TecnoLógicas, pp. 77-96, Dec. 2010. https://doi.org/10.22430/22565337.120

K. A. Al-Ameri; S. Mahmud; A. Dutta, “Optimum conditions for high distillation partition performance: Comparative studies,” Applied Thermal Engineering, vol. 162, Nov. 2019. https://doi.org/10.1016/j.applthermaleng.2019.114279

A. K. Jana, “Dynamic simulation, numerical control and analysis of a novel bottom flashing scheme in batch distillation,” Computers and Chemical Engineering, vol. 89, pp. 166-171, Jun. 2016. https://doi.org/10.1016/j.compchemeng.2016.04.010

I. Q. Matos; J. S. Varandas; J. P. Santos, “Thermodynamic modeling of azeotropic mixtures with [EMIM][TfO] with cubic-plus-association and cubic EOSs,” Brazilian Journal of chemical engineering, vol. 35, no. 02, pp. 363-372, Apr. 2018. https://doi.org/10.1590/0104-6632.20180352s20160025

H. Baseri; M. N. Lotfollahi, “Modification of Peng Robinson EOS for modelling (vapour + liquid) equilibria with electrolyte solutions,” J. Chem. Thermodynamics, vol. 43, no. 10, pp. 1535-1540, Oct. 2011. https://doi.org/10.1016/j.jct.2011.05.008

L. A. Forero; J. A. Velásquez, “The Patel–Teja and the Peng–Robinson EoSs performance when Soave alpha function is replaced by an exponential function,” Fluid Phase Equilibria, vol. 332, pp. 55-76, Oct. 2012. https://doi.org/10.1016/j.fluid.2012.05.026

F. A. Banat; F. A. Al-Rub; M. Shannag, “Modeling of dilute ethanol–water mixture separation by membrane distillation,” Separation and Purification Technology, vol. 16, no. 2, pp. 119-131, Jul. 1999. https://doi.org/10.1016/S1383-5866(98)00117-8

J. S. Carey; W. K. Lewis, “Studies in Distillation. Liquid-Vapor Equilibria of Ethyl Alcohol-Water Mixtures,” Ind. Eng. Chem, vol. 24, no. 8, pp. 882-883, Aug. 1932. https://doi.org/10.1021/ie50272a011

M. A. S. S. Ravagnani; M. H. M. Reis; R. Maciel Filho; M. R. Wolf Maciel, “Anhydrous ethanol production by extractive distillation: A solvent case study” Process Safety and Environmental Protection, vol. 88, no. 1, pp. 67-73, Jan. 2010. https://doi.org/10.1016/j.psep.2009.11.005

M.E.T. Alvarez; E. B. Moraes; J. C. Rodrigues; A. J. Bonon; M. R. Wolf Maciel, “Evaluation of the batch distillation process in the ethanol production” Computer Aided Chemical Engineering, vol. 30, pp. 632-636, 2012. https://doi.org/10.1016/B978-0-444-59519-5.50127-1

L. A. Forero; J. A. Velásquez, “A generalized cubic equation of state for non-polar and polar substances,” Fluid Phase Equilibria., vol. 418, pp. 74-87, Jun 2016. https://doi.org/10.1016/j.fluid.2015.09.045

J. A. Velásquez; L. A. Forero, “Complemento en MS. Excel ® para consulta de propiedades termodinámicas de sustancias puras.,” Investigaciones aplicadas, vol. 2, no. 2, pp. 23-29, 2008. https://dialnet.unirioja.es/servlet/articulo?codigo=2884839

C. J. Geankoplis, “Procesos de transporte y operaciones unitarias”, 3 ed., México: Compañía editorial Continental, 1998. https://fenomenosdetransporte.files.wordpress.com/2008/05/geankopolis.pdf

R. E. Treybal, Mass-Transfer Operations, 2 Ed, McGraw-Hill Book Company, 1980.

L. Kong; C. T. Maravelias, “From graphical to model-based distillation column design: A McCabe-Thiele-inspired mathematical programming approach,” Process Systems Engineering, vol. 65, no. 11, pp. 1-21. Nov. 2019. https://doi.org/10.1002/aic.16731

C. A. Henao, Simulación y evaluación de procesos químicos, Medellín: Universidad Pontificia Bolivariana, 2006.

A. Anderko, “4 Cubic and generalized van der waals equations,” Experimental Thermodynamics, vol. 5, pp. 75-126, 2000. https://doi.org/10.1016/S1874-5644(00)80015-6

L. F. Cardona; L. A. Forero; J. A. Velásquez, “Modelamiento de la Viscosidad con Base en una Ecuación Cúbica TP del Tipo Peng-Robinson,” Información tecnológica, vol. 30, no. 4, pp. 259-272, Aug. 2019. http://dx.doi.org/10.4067/S0718-07642019000400259

T. Lopez-Arenas; S. S. Mansouri; M. Sales-Cruz; R. Gani; E. S. Pérez-Cisneros, “A Gibbs energy-driving force method for the optimal design of non-reactive and reactive distillation columns,” Computers and Chemical Engineering, vol. 128, pp. 53-68, Sep. 2019. https://doi.org/10.1016/j.compchemeng.2019.05.024

C. A. Faúndez; J. O. Valderrama, “Phase equilibrium modeling in binary mixtures found in wine and must distillation,” Journal of Food Engineering, vol. 65, no. 4, pp. 577-583, Dec. 2004. https://doi.org/10.1016/j.jfoodeng.2004.02.023

L. A. Díaz Montes; A. F. Merchán Galindo; J. A. Velasquez Jimenez; C. A. Rodríguez Cabrera, “Complemento en MS-EXCEL® para la solución de sistemas de ecuaciones diferenciales ordinarias,” Investigaciones Aplicadas, vol. 3, no. 1, pp. 34-43, 2009. https://dialnet.unirioja.es/servlet/articulo?codigo=3219154

G. P. Distefano, “Mathematical modeling and numerical integration of multicomponent batch distillation equations,” AIChE Journal, vol. 14, no. 1, pp. 190-199, Jan. 1968. https://doi.org/10.1002/aic.690140132

S. C. Chapra; R. P. Canale, Métodos Numéricos para ingenieros, McGraw-Hill, 2007. https://ayudasingenieria.com/files/METODOS_NUMERICOS/chapra.pdf

T. Mejdell; S. Skogestad, “Composition Estimator in a Pilot-Plant Distillation Column Using Multiple Temperatures,” Ind. Eng. Chem. Res. vol. 30, no. 12, pp. 2555-2564, Dec. 1991. https://doi.org/10.1021/ie00060a008

V. Gomis; R. Pedraza; M. D. Saquete; A. Font; J. Garcia Cano, “Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend,” Fuel, vol. 139, pp. 568-574, Jan. 2015. http://dx.doi.org/10.1016/j.fuel.2014.09.041

J. K. Johnsen, “Robust Distillation Control – Application of H-infinity Loop Shaping,” Technical Cybernetics, Norwegian University of Science and Technology, 2005. https://www.semanticscholar.org/paper/Robust-Distillation-Control-%E2%80%93-Application-of-Loop-Johnsen/fc9a6ff8938af80c02a3faaa4d8971c268cd4cf1

A. Vidal, “Diseño de un Esquema FDI-FTC mediante Modos Deslizantes para Fallas en Componentes y Actuador Aplicación a la Columna de Destilación,” (Tesis de Maestría), Departamento de Ingeniería Electrónica. Centro Nacional de Investigación y Desarrollo Tecnológico, México, 2010. https://www.semanticscholar.org/paper/Robust-Distillation-Control-%E2%80%93-Application-of-Loop-Johnsen/fc9a6ff8938af80c02a3faaa4d8971c268cd4cf1

Y. Wang; C. Gong; J. Sun; H. Gao; S. Zheng; S. Xu, “Separation of ethanol/water azeotrope using compound starch-based adsorbents,” Bioresource Technology, vol. 101, no. 15, pp. 6170-6176, 2010. https://doi.org/10.1016/j.biortech.2010.02.102

F. D. Mayer; R. S. Hoffmann; R. Hoffmann, “An innovative project involving an appropriate hybrid distillation system for small-scale ethanol fuel production,” Chemical Engineering Communications, vol. 200, no. 4, pp. 563-574, Dec. 2013. https://doi.org/10.1080/00986445.2012.717315

How to Cite
Zapata Benabithe, Z., Vanegas , D., Rendon Montoya, J. C., & Velásquez , J. A. (2020). Case study of ethanol-water distillation in continuous and discontinuous operation and its simulation with cubic equations of state and activity models. TecnoLógicas, 23(49), 223-249. https://doi.org/10.22430/22565337.1638

Downloads

Download data is not yet available.
Published
2020-09-15
Section
Research Papers