A Web Application to Analyze Students’ Emotions and Attention

Keywords: Web application, Attention monitoring, Emotion recognition, Facial recognition


Analyzing and monitoring students’ attention level in virtual environments allows teachers to take actions to improve teaching-learning processes. This study introduces the integration of two models, one for emotion recognition and one for attention analysis, both of them aimed at monitoring the interactions of students in virtual environments. Such integration was completed on a web platform employing the Flask framework, where the artificial intelligence models used to analyze the interaction can be executed. The results obtained show that teachers, as knowledge mediators, can use the platform to understand the behavior of the students in synchronous and asynchronous virtual environments and take actions to improve learning experiences. The results also highlight the advantages of employing the Model-View-Controller (MVC) pattern in web applications, using and integrating artificial intelligence techniques through the Flask framework.

Author Biographies

Alejandro Piedrahíta-Carvajal*, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, alejandropiedrahita264000@correo.itm.edu.co

Paula Andrea Rodríguez-Marín, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, paularodriguez@itm.edu.co

Daniel F. Terraza-Arciniegas, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, danielterraza212285@correo.itm.edu.co

Mauricio Amaya-Gómez, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, mauricioamaya189862@correo.itm.edu.co

Leonardo Duque-Muñoz, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, leonardoduque@itm.edu.co

Juan David Martínez-Vargas, Instituto Tecnológico Metropolitano, Colombia

Instituto Tecnológico Metropolitano, Medellín-Colombia, juanmartinez@itm.edu.co


A. Gegenfurtner; S. Narciss; L. K. Fryer; S. Järvelä; J. M. Harackiewicz, “Editorial: Affective Learning in Digital Education,” Front. Psychol., vol. 11, pp. 2020–2022, Jan. 2020. https://doi.org/10.3389/fpsyg.2020.630966

A. Puente Ferreras, Psicología contemporánea básica y aplicada. Ed, Piramide. 2011. https://www.edicionespiramide.es/libro.php?id=2786932

D. Hazarika; S. Poria; R. Zimmermann; R. Mihalcea, “Conversational transfer learning for emotion recognition,” Inf. Fusion, vol. 65, pp. 1–12, Jan. 2021. https://doi.org/10.1016/j.inffus.2020.06.005

N. Ibañez, “Las emociones en el aula,” Estud. Peagogicos, vol. 1, no. 28, pp. 31–45, 2002. https://www.redalyc.org/pdf/1735/173513847002.pdf

A. Fernández-Castillo; M. E. Gutiérrez Rojas, “Atención selectiva, ansiedad, sintomatología depresiva y rendimiento académico en adolescentes,” Electron. J. Res. Educ. Psychol., vol. 7, no. 1, pp. 49–76, Apr. 2009. https://www.redalyc.org/articulo.oa?id=293121936004

G. Caicedo Delgado, “La enseñanza en ingeniería,” Tecnológicas, no. 31, pp. 9–11, Nov. 2013. https://doi.org/10.22430/22565337.95

V. Londoño-Osorio; J. Marín-Pineda; E. I. Arango-Zuluaga, “Introduction to Artificial Vision through Laboratory Guides Using Matlab,” TecnoLógicas, pp. 591- 603, 2013. https://doi.org/10.22430/22565337.350

M. M. Bundele; R. Banerjee, “Detection of fatigue of vehicular driver using skin conductance and oximetry pulse: a neural network approach,” in 11th International Conference on Information Integration and web-based applications & services, Lumpur 2009, pp. 739–744. https://doi.org/10.1145/1806338.1806478

C. Li; C. Xu; Z. Feng, “Analysis of physiological for emotion recognition with the IRS model,” Neurocomputing, vol. 178, pp. 103–111, Feb. 2016. https://doi.org/10.1016/j.neucom.2015.07.112

S. K. D’Mello; S. D. Craig; A. C. Graesser, “Multimethod assessment of affective experience and expression during deep learning,” Int. J. Learn. Technol., vol. 4, no. 3/4, Oct. 2009, https://doi.org/10.1504/ijlt.2009.028805

S. K. D’Mello; A. Graesser, “Multimodal semi-automated affect detection from conversational cues, gross body language, and facial features,” User Model. User-adapt. Interact., vol. 20, no. 2, pp. 147–187, May. 2010. https://doi.org/10.1007/s11257-010-9074-4

A. Kapoor; R. W. Picard, “Multimodal affect recognition in learning environments,” Proceedings of the 13th ACM International Conference on Multimedia, MM 2005. pp. 677–682, Nov. 2005. https://doi.org/10.1145/1101149.1101300

B. Mcdaniel; S. D’Mello; B. King; P. Chipman; K. Tapp; A. Graesser, “Facial Features for Affective State Detection in Learning Environments,” in UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society, vol. 29, no. 29, pp. 467-472, 2007. https://escholarship.org/content/qt9w00945d/qt9w00945d.pdf

S. Craig; A. Graesser; J. Sullins; B. Gholson, “Affect and learning: An exploratory look into the role of affect in learning with AutoTutor,” J. Educ. Media, vol. 29, no. 3, pp. 241–250, Jul. 2010. https://doi.org/10.1080/1358165042000283101

R. Pekrun; T. Goetz; A. C. Frenzel; P. Barchfeld; R. P. Perry, “Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ),” Contemp. Educ. Psychol., vol. 36, no. 1, pp. 36–48, Jan. 2011. https://doi.org/10.1016/j.cedpsych.2010.10.002

C. Jonathan; J. P.-L. Tan; E. Koh; I. S. Caleon; S. H. Tay, “Engagement as flourishing: The contribution of positive emotions and coping to adolescents’ engagement at school and with learning,” Psychology in the Schools, vol. 45, no. 5, pp. 419–431, 2017. https://doi.org/10.1002/pits.20306

T. E. Oliphant, “Python for scientific computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 10–20, Jun. 2007. https://doi.org/10.1109/MCSE.2007.58

I. Challenger-Pérez; Y. Díaz-Ricardo; R. A. Becerra-García, “El lenguaje de programación Python,” Ciencias Holguín, vol. 20, no. 2, pp. 1–13, Abr. 2014. https://www.redalyc.org/pdf/1815/181531232001.pdf

M. Anggo; La Arapu, “Face Recognition Using Fisherface Method,” en 2nd International Conference on Statistics, Mathematics, Teaching, and Research 2017, Makassar, Indonesia, 2017, pp. 998–1001, 2018. https://doi.org/10.1088/1742-6596/1028/1/012119

W. Shen; R. Khanna, “Prolog to Face Recognition: Eigenface, Elastic Matching, and Neural Nets,” Proc. IEEE, vol. 85, no. 9, p. 1422, Sep. 1997. https://doi.org/10.1109/JPROC.1997.628711

N. N. Mohammed; M. I. Khaleel; M. Latif; Z. Khalid, “Face Recognition Based on PCA with Weighted and Normalized Mahalanobis distance,” en International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Bangkok, 2018, pp. 267–267, doi: https://doi.org/10.1109/iciibms.2018.8549971

I. William; D. R. Ignatius Moses Setiadi; E. H. Rachmawanto; H. A. Santoso; C. A. Sari, “Face Recognition using FaceNet (Survey, Performance Test, and Comparison),” en Proc. 2019 4th Int. Conf. Informatics Comput. ICIC, Semarang, 2019. https://doi.org/10.1109/ICIC47613.2019.8985786

E. Winarno; I. H. Al Amin; H. Februariyanti; P. W. Adi; W. Hadikurniawati; M. T. Anwar, “Attendance System Based on Face Recognition System Using CNN-PCA Method and Real-Time Camera,” en 2019 2nd Int. Semin. Res. Inf. Technol. Intell. Syst. ISRITI, pp. 301–304, Yogyakarta, 2019. https://doi.org/10.1109/ISRITI48646.2019.9034596

C. Li; Z. Q; N. Jia; J. Wu, “Human face detection algorithm via Haar cascade classifier combined with three additional classifiers,” en ICEMI 2017 - Proc. IEEE 13th Int. Conf. Electron. Meas. Instruments, pp. 483–487, Yangzhou, 2017. https://doi.org/10.1109/ICEMI.2017.8265863

P. Viola; M. Jones, “Rapid object detection using a boosted cascade of simple features,” en Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Kauai, 2001. https://doi.org/10.1109/cvpr.2001.990517

L. Chen; Y. Hong Wang; Y. Ding Wang; D. Huang, “Face recognition with local binary patterns,” en Proc. 2009 Int. Conf. Mach. Learn. Cybern., Baoding, 2009, vol. 4, pp. 2433–2439. https://doi.org/10.1109/ICMLC.2009.5212189

J. Li; T. Qiu; C. Wen; K. Xie; F. Q. Wen, “Robust face recognition using the deep C2D-CNN model based on decision-level fusion,” Sensors (Switzerland), vol. 18, no. 7, pp. 1–27, Jun. 2018. https://doi.org/10.3390/s18072080

K. Zhang; Z. Zhang; Z. Li; Y. Qiao, “Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks,” IEEE Signal Process. Lett., vol. 23, no. 10, pp. 1499–1503, Aug. 2016. https://doi.org/10.1109/LSP.2016.2603342

M. R. Mufid; A. Basofi; M. U. H. Al Rasyid; I. F. Rochimansyah; A. Rokhim, “Design an MVC Model using Python for Flask Framework Development,” en 2019 International Electronics Symposium (IES)., Surabaya, 2019, pp. 214–219. https://doi.org/10.1109/ELECSYM.2019.8901656

F. A. Aslam; H. N. Mohammed; J. M. M. Munir; M. A. Gulamgaus, “Efficient Way Of Web Development Using Python And Flask,” Int. J. Adv. Res. Comput., vol. 6, no. 2, pp. 54–57, Mar. 2015. https://core.ac.uk/download/pdf/55305148.pdf

How to Cite
A. Piedrahíta-Carvajal, P. A. Rodríguez-Marín, D. F. Terraza-Arciniegas, M. Amaya-Gómez, L. Duque-Muñoz, and J. D. Martínez-Vargas, “A Web Application to Analyze Students’ Emotions and Attention”, TecnoL., vol. 24, no. 51, p. e1821, May 2021.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

More on this topic