Implementation of computational methods to estimate lower limb angle amplitudes during squat

Keywords: Artificial Neural Networks, Biomechanical analysis, Squat analysis, Computational modeling in biomechanics, Lower limb angle amplitudes


In biomechanics, motion capture systems based on video and markers are the most widely used method to estimate kinematic parameters. However, from a technical standpoint, experimental errors in data capture are often related to the masking of markers during motion capture. This phenomenon generates data loss that can affect the analysis of the results. The lack of data is solved by increasing the number of cameras or using additional devices such as inertial sensors. However, those additions increase the experimental cost of this method. Nowadays, new computational methods can be used to solve such problems less expensively. This study implemented two computational methods based on Artificial Neural Networks (ANNs) and Support Vector Regression (SVR) to estimate the amplitude of limb angles during the execution of a movement on a single axis (i.e., the z-axis). The characteristics of the squats were used to train and validate the models. The results obtained include RMSE values lower than 14 (minimum RMSE of 5.35) and CC values close to 0.98. The estimated values are very close to the experimental amplitude angles, and the statistical analyses showed no significant differences between the distributions and means of the estimated amplitude values and their actual counterparts (p-value>0.05). The results show that these methods could help biomechanics researchers perform accurate analyses, decrease the number of cameras needed, reduce uncertainty, and avoid data loss problems.

Author Biographies

Cristian Felipe Blanco-Díaz*, Universidad Antonio Nariño, Colombia

Universidad Antonio Nariño, Bogotá - Colombia,

Cristian David Guerrero-Méndez, Universidad Antonio Nariño, Colombia

Universidad Antonio Nariño, Bogotá - Colombia,

Mario Enrique Duarte-González, Universidad Antonio Nariño, Colombia

Universidad Antonio Nariño, Bogotá - Colombia,

Sebastián Jaramillo-Isaza, Universidad Antonio Nariño, Colombia

niversidad Antonio Nariño, Bogotá - Colombia,


M. Tits; J. Tilmanne; T. Dutoit, “Robust and automatic motion-capture data recovery using soft skeleton constraints and model averaging”, PLoS One, vol. 13, no. 7, p. e0199744, Jul. 2018.

E. Ceseracciu; Z. Sawacha; C. Cobelli, “Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept”, PLoS One, vol. 9, no. 3, p. e87640, Mar. 2014.

C. Jakob et al., “Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors”, in Proceedings of the 8th International Conference on Body Area Networks, 2013.

Y. Ma; K. Mithraratne; N. Wilson; X. B. Wang; Y. Ma; Y. Zhang, “The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy”, Sensors, vol. 19, no. 7, pp. 2-14, Apr. 2019.

B. F. Mentiplay; K. Hasanki; L. G. Perraton; Y. H. Pua; P. C. Charlton; R. A. Clark, “Three-dimensional assessment of Squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity”, J. Sports Sci., vol. 36, no. 19, pp. 2202-2209, Mar. 2018.

N. Nakano et al., “Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose with Multiple Video Cameras”, Front. Sport. Act. Living, vol. 2, May. 2020.

B. Pueo, “High speed cameras for motion analysis in sports science”, J. Hum. Sport Exerc., vol. 11, no. 1, pp. 53-77, 2016.

L. L. Gómez Echeverry; A. M. Jaramillo Henao; M. A. Ruiz Molina; S. M. Velásquez Restrepo; C. A. Páramo Velásquez; G. J. Silva Bolívar, “Human motion capture and analysis systems: a systematic review”, Prospectiva, vol. 16, no. 2, pp. 24–34, Jul. 2018.

E. Halilaj; A. Rajagopal; M. Fiterau; J. L. Hicks; T. J. Hastie; S. L. Delp, “Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities”, J. Biomech., vol. 81, pp. 1–11, Nov. 2018.

R. Bartlett, Introduction to Sports Biomechanics. Routledge, 3rd Edition, Routledge, 2014.

T. W. Lu; C. F. Chang, “Biomechanics of human movement and its clinical applications”, Kaohsiung J. Med. Sci., vol. 28, no. 2S, pp. S13–S25, Feb. 2012.

H. M. Ericksen; A. C. Thomas; P. A. Gribble; C. Armstrong; M. Rice; B. Pietrosimone, “Jump-landing biomechanics following a 4-week real-time feedback intervention and retention”, Clin. Biomech., vol. 32, pp. 85–91, Feb. 2016.

E. K. Chadwick; D. Blana; A. J. van den Bogert; R. F. Kirsch, “A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements”, IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 941–948, Apr. 2009.

B. J. Schoenfeld, “Squatting kinematics and kinetis and their application to exercise performance”, J. Strength Cond. Res., vol. 24, no. 12, pp. 3497–3506, 2010.

J. K. Aggarwal; M. S. Ryoo, “Human activity analysis: A review”, ACM Comput. Surv., vol. 43, no. 3, pp. 16-43, Apr. 2011.

S. Almosnino; D. Kingston; R. B. Graham, “Three-dimensional knee joint moments during performance of the bodyweight Squat: Effects of stance width and foot rotation”, J. Appl. Biomech., vol. 29, no. 1, pp. 33–43, Feb. 2013.

P. H. Marchetti et al., “Muscle Activation Differs between Three Different Knee Joint-Angle Positions during a Maximal Isometric Back Squat Exercise”, J. Sports Med., vol. 2016, Jul. 2016.

L. V. Slater; J. M. Hart, “Muscle Activation Patterns during Different Squat Techniques”, J. Strength Cond. Res., vol. 31, no. 3, pp. 667–676, Mar. 2017.

D. J. Glassbrook; E. R. Helms; S. R. Brown; A. G. Storey, “A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat”, J. Strength Cond. Res., vol. 31, no. 9, pp. 2618–2634, Sep. 2017.

S. Howarth; J. P. Callaghan, “Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of human movement”, Comput. Methods Biomech. Biomed. Engin., vol. 13, no. 6, pp. 847–855, Dec. 2010.

Ø. Gløersen; P. Federolf, “Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations”, PLOS ONE, vol. 11, no. 3, p. e0152616, Mar. 2016.

R. Bartlett, “Artificial Intelligence in sports biomechanics: New dawn or false hope?”, J. Sport. Sci. Med., vol. 5, no. 4, pp. 474–479, Dec. 2006.

K. Kipp; M. Giordanelli; C. Geiser, “Predicting net joint moments during a weightlifting exercise with a neural network model”, J. Biomech., vol. 74, pp. 225–229, Jun. 2018.

A. Gholipour; N. Arjmand, “Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models”, J. Biomech., vol. 49, no. 13, pp. 2946–2952, Sep. 2016.

N. Shahid; T. Rappon; W. Berta, “Applications of artificial neural networks in health care organizational decision-making: A scoping review”, PLoS One, vol. 14, no. 2, p. e0212356, Feb. 2019.

A. R. Zangene; A. Abbasi, “Continuous Estimation of Knee Joint Angle during Squat from sEMG using Artificial Neural Networks”, 27th Natl. 5th Int. Iran. Conf. Biomed. Eng. ICBME 2020, no. Nov. 2020, pp. 75–78, Tehran.

D. S. Komaris et al., “Predicting Three-Dimensional Ground Reaction Forces in Running by Using Artificial Neural Networks and Lower Body Kinematics”, IEEE Access, vol. 7, pp. 156779–156786, Oct. 2019.

V. Bazarevsky; I. Grishchenko; K. Raveendran; T. Zhu, F. Zhang; M. Grundmann, “BlazePose: On-device Real-time Body Pose tracking”, Jun. 2020.

C. Blanco-Diaz; C. D. Guerrero-Mendez; M. E. Duarte-González; S. Jaramillo-Isaza, “Estimation of Limbs Angles Amplitudes During the Use of the Five Minute Shaper Device Using Artificial Neural Networks”, CCIS series, pp. 213-224, Sep. 2021.

C. F. Blanco Diaz; A. K. Quitian González; S. J. Isaza; A. D. Orjuela-Cañón, “A Biomechanical Analysis of Free Squat Exercise Employing Self-Organizing Maps”, in 2019 IEEE ColCACI, Jun. 2019, pp. 1–5.

V. K. Ojha; A. Abraham; V. Snášel, “Metaheuristic design of feedforward neural networks: A review of two decades of research”, Eng. Appl. Artif. Intell., vol. 60, pp. 97–116, Apr. 2017.

R. K. Fukuchi; B. M. Eskofier; M. Duarte; R. Ferber, “Support vector machines for detecting age-related changes in running kinematics”, J. Biomech., vol. 44, no. 3, pp. 540–542, Feb. 2011.

F. O. López-Pabón; T. Arias-Vergara; J. R. Orozco-Arroyave, “Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease”, TecnoLógicas, vol. 23, no. 47, pp. 93–108, Jan. 2020.

C. F. Blanco-Díaz; A. K. Quitian-González, “Análisis biomecánico del ejercicio sentadilla libre en sujetos sin acondicionamiento físico”, Rev. Ontare, vol. 6, Dic. 2018.

R. Baker, “ISB recommendation on definition of joint coordinate systems for the reporting of human joint motion—part I: ankle, hip and spine”, J. Biomech., vol. 36, no. 2, pp. 300–302, Feb. 2003.

P. S. Glazier; G. P. Paradisis; S-M. Cooper, “Anthropometric and kinematic influences on release speed in men’s fast-medium bowling”, J. Sports Sci., vol. 18, no. 12, pp. 1013–1021, Jan. 2000.

R. Contini; R. J. Drillis; M. Bluestein, “Determination of Body Segment Parameters”, Hum. Factors J. Hum. Factors Ergon. Soc., vol. 5, no. 5, pp. 493–504, Oct. 1963.

How to Cite
C. F. Blanco-Diaz, C. D. Guerrero-Méndez, M. E. Duarte-González, and S. Jaramillo-Isaza, “Implementation of computational methods to estimate lower limb angle amplitudes during squat”, TecnoL., vol. 25, no. 53, p. e2164, Mar. 2022.


Download data is not yet available.
Research Papers
Crossref Cited-by logo

More on this topic