Estrategias de predicción de consumo energético en edificaciones: una revisión

Palabras clave: Demanda de energía, eficiencia energética, consumo de energía en edificaciones, enfoques de predicción, métricas de desempeño

Resumen

Los edificios son uno de los principales actores contaminantes del medio ambiente, por lo que es necesario fortalecer las estrategias para la reducción de su consumo energético, como el diseño energéticamente eficiente (edificios nuevos) y la gestión energética (edificios existentes). Para ello, es fundamental la predicción del consumo energético que permita conocer el estado de operación de la edificación e inferir sobre las causas de éste y la eficacia de las estrategias de ahorro energético. No obstante, la diversidad de técnicas de predicción del consumo energético existentes dificulta a investigadores su identificación, selección y aplicación. Por ello, a partir de una revisión de la literatura, este artículo identifica técnicas de predicción, expone sus principios teóricos, describe las etapas generales de construcción de un modelo de predicción, reconoce métricas de evaluación, identifica algunas de sus fortalezas y debilidades y presenta criterios para facilitar la selección de una técnica de predicción y métricas de evaluación según las características del caso de estudio. Se realizó un análisis bibliométrico como metodología para identificar y estudiar los artículos más importantes sobre demanda de energía en edificios. Se encuentra que hay tendencia en la aplicación de técnicas de aprendizaje automático y que los modelos de predicción de consumo energético son mayormente aplicados a edificaciones residenciales, comerciales y educativas.

Biografía del autor/a

Liliana Ortega-Diaz, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, liliana2228331@correo.uis.edu.co

 
Jorge Cárdenas-Rangel, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, jorge2148225@correo.uis.edu.co

German Osma-Pinto*, Universidad Industrial de Santander, Colombia

Universidad Industrial de Santander, Bucaramanga-Colombia, gealosma@uis.edu.co

Referencias bibliográficas

International Energy Agency, “Buildings,” 2022. https://www.iea.org/reports/buildings

United Nations Environment Programme, “2022 Global Status Report for Buildings and Construction,” Nairobi, Nov. 2022. https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction

B. Dandotiya and H. K. Sharma, “Climate Change and Its Impact on Terrestrial Ecosystems,” in Impacts of Climate Change on Agriculture and Aquaculture, A. Karmaoui, K. Barrick, M. Reed, and M. Baig (Eds)., IGI Global, 2021, pp. 140–157. https://doi.org/10.4018/978-1-7998-3343-7.ch007

J.-M. Liao, M.-J. Chang, and L.-M. Chang, “Prediction of air-conditioning energy consumption in R&D building using multiple machine learning techniques,” Energies, vol. 13, no. 7, p. 1847, Apr. 2020. https://doi.org/10.3390/en13071847

H. Bulkeley and M. M. Betsill, “Cities and Climate Change: Urban Sustainability and Global Environmental Governance,” Routledge, 2003. Cities and Climate Change: Urban Sustainability and Global Environmental Governance (worktribe.com)

A.-D. Pham, N.-T. Ngo, T. T. Ha Truong, N.-T. Huynh, and N.-S. Truong, “Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability,” J Clean Prod., vol. 260, p. 121082, Jul. 2020, https://doi.org/10.1016/j.jclepro.2020.121082

C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series forecasting techniques for building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 902–924, Jul. 2017. https://doi.org/10.1016/j.rser.2017.02.085

N.-T. Ngo, A.-D. Pham, T. T. Ha Truong, N.-S. Truong, N.-T. Huynh, and T. M. Pham, “An Ensemble Machine Learning Model for Enhancing the Prediction Accuracy of Energy Consumption in Buildings,” Arab J Sci Eng, vol. 47, pp. 4105–4117, Jun. 2022. https://doi.org/10.1007/s13369-021-05927-7

Y. Chen, M. Guo, Z. Chen, Z. Chen, and Y. Ji, “Physical energy and data-driven models in building energy prediction: A review,” Energy Reports, vol. 8, pp. 2656–2671, Nov. 2022. https://doi.org/10.1016/j.egyr.2022.01.162

E. Elbeltagi and H. Wefki, “Predicting energy consumption for residential buildings using ANN through parametric modeling,” Energy Reports, vol. 7, pp. 2534–2545, Nov. 2021. https://doi.org/10.1016/j.egyr.2021.04.053

R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, “Machine learning for energy performance prediction at the design stage of buildings,” Energy for Sustainable Development, vol. 66, pp. 12–25, Feb. 2022. https://doi.org/10.1016/j.esd.2021.11.002

R. Chen and Y.-S. Tsay, “Carbon emission and thermal comfort prediction model for an office building considering the contribution rate of design parameters,” Energy Reports, vol. 8, pp. 8093–8107, Nov. 2022. https://doi.org/10.1016/j.egyr.2022.06.012

H.-x. Zhao and F. Magoulès, “A review on the prediction of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586–3592, Aug. 2012. https://doi.org/10.1016/j.rser.2012.02.049

Y. Wei et al., “A review of data-driven approaches for prediction and classification of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 82, Part. 1, pp. 1027–1047, Feb. 2018. https://doi.org/10.1016/j.rser.2017.09.108

A. A. Ahmed Gassar and S. H. Cha, “Energy prediction techniques for large-scale buildings towards a sustainable built environment: A review,” Energy Build., vol. 224, p. 110238, Oct. 2020. https://doi.org/10.1016/j.enbuild.2020.110238

A. D’Amico, G. Ciulla, M. Traverso, V. Lo Brano, and E. Palumbo, “Artificial Neural Networks to assess energy and environmental performance of buildings: An Italian case study,” J Clean Prod., vol. 239, p. 117993, Dec. 2019. https://doi.org/10.1016/j.jclepro.2019.117993

Y. Ding, L. Fan, and Xue Liu, “Analysis of feature matrix in machine learning algorithms to predict energy consumption of public buildings,” Energy Build., vol. 249, p. 111208, Oct. 2021. https://doi.org/10.1016/j.enbuild.2021.111208

F. Martellotta, U. Ayr, P. Stefanizzi, A. Sacchetti, and G. Riganti, “On the use of artificial neural networks to model household energy consumptions,” Energy Procedia, vol. 126, pp. 250-257, Sep. 2017. https://doi.org/10.1016/j.egypro.2017.08.149

Q. Qiao, A. Yunusa-Kaltungo, and R. Edwards, “Hybrid method for building energy consumption prediction based on limited data,” in 2020 IEEE PES/IAS PowerAfrica, Nairobi, 2020, pp. 1-5. https://ieeexplore.ieee.org/document/9219915

J. Hwang, D. Suh, and M.-O. Otto, “Forecasting electricity consumption in commercial buildings using a machine learning approach,” Energies, vol. 13, no. 22, p. 5885, Nov. 2020, https://doi.org/10.3390/en13225885

N.-T. Ngo, A.-D. Pham, T. T. Ha Truong, N.-S. Truong, and N.-T. Huynh, “Developing a hybrid time-series artificial intelligence model to forecast energy use in buildings,” Sci Rep., vol. 12, p. 15775, Sep. 2022. https://doi.org/10.1038/s41598-022-19935-6

D. Durand, J. Aguilar, and M. D. R-Moreno, “An Analysis of the Energy Consumption Forecasting Problem in Smart Buildings Using LSTM,” Sustainability, vol. 14, no. 20, p. 13358, Oct. 2022. https://doi.org/10.3390/su142013358

Y. Zhou, L. Wang, and J. Qian, “Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions,” Sustainability, vol. 14, no. 12, p. 7349, Jun. 2022. https://doi.org/10.3390/su14127349

R. Pino-Mejías, A. Pérez-Fargallo, C. Rubio-Bellido, and J. A. Pulido-Arcas, “Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions,” Energy, vol. 118, pp. 24–36, Jan. 2017. https://doi.org/10.1016/j.energy.2016.12.022

T. C. Quevedo, M. S. Geraldi, and A. P. Melo, “Applying machine learning to develop energy benchmarking for university buildings in Brazil,” Journal of Building Engineering, vol. 63, Part. A, p. 105468, Jan. 2023. https://doi.org/10.1016/j.jobe.2022.105468

Y. Ma, J.-q. Yu, C.-y. Yang, and L. Wang, “Study on power energy consumption model for large-scale public building,” in 2010 2nd International Workshop on Intelligent Systems and Applications, Wuhan, 2010, pp. 1–4. https://doi.org/10.1109/IWISA.2010.5473608

F. Gong, N. Han, D. Li, and S. Tian, “Trend Analysis of Building Power Consumption Based on Prophet Algorithm,” in 2020 Asia Energy and Electrical Engineering Symposium, Chengdu, 2020, pp. 1002-1006. https://doi.org/10.1109/AEEES48850.2020.9121548

D. Zhao, M. Zhong, X. Zhang, and X. Su, “Energy consumption predicting model of VRV (Variable refrigerant volume) system in office buildings based on data mining,” Energy, vol. 102, pp. 660–668, May. 2016. http://dx.doi.org/10.1016/j.energy.2016.02.134

Y. Fu, Z. Li, H. Zhang, and P. Xu, “Using Support Vector Machine to Predict Next Day Electricity Load of Public Buildings with Sub-metering Devices,” Procedia Engineering, vol. 121, pp. 1016–1022, Jul. 2015. https://doi.org/10.1016/j.proeng.2015.09.097

C. Nichiforov, N. Arghira, G. Stamatescu, I. Stamatescu, I. Făgărăsan, and S. S. Iliescu, “Efficient Load Forecasting Model Assessment for Embedded Building Energy Management Systems,” in 2022 23rd IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, 2022, pp. 1-6. https://doi.org/10.1109/AQTR55203.2022.9801969

R. K. Jagait, M. N. Fekri, K. Grolinger, and S. Mir, “Load forecasting under concept drift: Online ensemble learning with recurrent neural network and ARIMA,” IEEE Access, vol. 9, pp. 98992–99008, 2021. https://doi.org/10.1109/ACCESS.2021.3095420

J. Brusokas, T. B. Pedersen, L. Šikšnys, D. Zhang, and K. Chen, “HeatFlex: Machine learning based data-driven flexibility prediction for individual heat pumps,” in e-Energy 2021 - Proceedings of the 2021 12th ACM International Conference on Future Energy Systems, New York, 2021, pp. 160–170. https://doi.org/10.1145/3447555.3464866

M. Gaur, S. Makonin, I. V. Bajic, and A. Majumdar, “Performance Evaluation of Techniques for Identifying Abnormal Energy Consumption in Buildings,” IEEE Access, vol. 7, pp. 62721–62733, 2019. https://doi.org/10.1109/ACCESS.2019.2915641

T. Fang and R. Lahdelma, “Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system,” Appl Energy, vol. 179, pp. 544–552, Oct. 2016. http://dx.doi.org/10.1016/j.apenergy.2016.06.133

J.-S. Chou, S.-C. Hsu, N.-T. Ngo, C.-W. Lin and C.-C. Tsui, “Hybrid Machine Learning System to Forecast Electricity Consumption of Smart Grid-Based Air Conditioners,” IEEE Syst J., vol. 13, no. 3, pp. 3120–3128, Sep. 2019. https://doi.org/10.1109/JSYST.2018.2890524

J. A. Bello, H. Franco, and J. A. Fonseca, “Hybrid Model for Energy Consumption Forecasting in Buildings Stocks in Tropical Regions,” in 16th IBPSA International Conference and Exhibition, Building Simulation, Rome, 2019. https://doi.org/10.3929/ethz-b-000349218

F. Harrou, T. Cheng, Y. Sun, T. O. Leiknes, and N. Ghaffour, “A Data-Driven Soft Sensor to Forecast Energy Consumption in Wastewater Treatment Plants: A Case Study,” IEEE Sens J., vol. 21, no. 4, pp. 4908–4917, Feb. 2021. https://doi.org/10.1109/JSEN.2020.3030584

S. Goudarzi, M. H. Anisi, S. A. Soleymani, M. Ayob, and S. Zeadally, “An IoT-Based Prediction Technique for Efficient Energy Consumption in Buildings,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 4, pp. 2076–2088, Dec. 2021. https://doi.org/10.1109/TGCN.2021.3091388

S. S. Kumar, A. Kumar, S. Agarwal, M. Syafrullah, and K. Adiyarta, “Forecasting indoor temperature for smart buildings with ARIMA, SARIMAX, and LSTM: A fusion approach,” in 2022 9th International Conference on Electrical Engineering, Computer Science and Informatics, Jakarta, 2022, pp. 186–192. https://doi.org/10.23919/EECSI56542.2022.9946498

J. N. Castillo, G. G. Carrillo, L. O. Freire, and B. P. Corrales, “Energy modeling and simulation of a building to perform sensitivity analysis of energy consumption,” Energy Reports, vol. 8, Suppl. 16, pp. 659–664, Dec. 2022. https://doi.org/10.1016/j.egyr.2022.10.197

R. D. Kutkarska and D. Y. Koeva, “Heat energy consumption forecast analysis: Model-oriented multi-objective approach,” in Journal of Physics: Conference Series, Varna, 2022. https://doi.org/10.1088/1742-6596/2339/1/012003

J. H. Yoon, R. Bladick, and A. Novoselac, “Demand response for residential buildings based on dynamic price of electricity,” Energy Build., vol. 80, pp. 531–541, Sep. 2014. https://doi.org/10.1016/j.enbuild.2014.05.002

S. Duerr, C. Ababei, and D. M. Ionel, “SmartBuilds: An energy and power simulation framework for buildings and districts,” IEEE Trans Ind Appl., vol. 53, no. 1, pp. 402- 410, Feb. 2017. https://doi.org/10.1109/TIA.2016.2611667

J. Wang, S. Huang, D. Wu, and N. Lu, “Operating a commercial building HVAC load as a virtual battery through airflow control,” IEEE Trans Sustain Energy, vol. 12, no. 1, pp. 158–168, Jan. 2021. https://doi.org/10.1109/TSTE.2020.2988513

C. Xu, Y. Li, X. Jin, L. Yuan, and H. Cheng, “A real-time energy consumption simulation and comparison of buildings in different construction years in the Olympic Central Area in Beijing,” Sustainability, vol. 9, no. 12, p. 2245, Dec. 2017. https://doi.org/10.3390/su9122245

A. Qiu, Z. Yan, Q. Deng, J. Liu, L. Shang, and J. Wu, “Modeling of HVAC Systems for Fault Diagnosis,” IEEE Access, vol. 8, pp. 146248–146262, 2020. https://doi.org/10.1109/ACCESS.2020.3015526

Y. Wei, S. Wang, H. Dang, and P. Liu, “Climate Adaptability Analysis on the Shape of Outpatient Buildings for Different Climate Zones in China Based on Low-Energy Target,” Atmosphere, vol. 13, no. 12, p. 2121, Dec. 2022. https://doi.org/10.3390/atmos13122121

B. Verbruggen and J. Driesen, “Grid impact indicators for active building simulations,” IEEE Trans Sustain Energy, vol. 6, no. 1, pp. 43–50, Jan. 2015. https://doi.org/10.1109/TSTE.2014.2357475

J. Ferdyn-Grygierek, D. Bartosz, A. Specjał, and K. Grygierek, “Analysis of accuracy determination of the seasonal heat demand in buildings based on short measurement periods,” Energies, vol. 11, no. 10, p. 2734, Oct. 2018. https://doi.org/10.3390/en11102734

S. H. Alyami, A. A. Almutlaqa, A. M. Alqahtany, and N. Ashraf, “Likelihood of Reaching Zero Energy Building Design in Hot Dry Climate: Saudi Arabia,” IEEE Access, vol. 9, pp. 167054–167066, 2021. https://doi.org/10.1109/ACCESS.2021.3134365

H. Salem, K. Khanafer, M. Alshammari, A. Sedaghat, and S. Mahdi, “Cooling Degree Days for Quick Energy Consumption Estimation in the GCC Countries,” Sustainability, vol. 14, no. 21, p. 13885, Oct. 2022. https://doi.org/10.3390/su142113885

S. Samiuddin, I. M. Budaiwi, and M. A. Mohammed, “Impact of HVAC Operation and Air Distribution Schemes on Thermal Comfort and Energy Consumption in Intermittent High-Occupancy Buildings: A Case of Mosques,” Journal of Architectural Engineering, vol. 29, no. 1, p. 04022039 Nov. 2023. https://doi.org/10.1061/JAEIED.AEENG-1451

D. Kadrić, A. Aganovic, E. Kadrić, B. Delalić-Gurda, and S. Jackson, “Applying the response surface methodology to predict the energy retrofit performance of the TABULA residential building stock,” Journal of Building Engineering, vol. 61, p. 105307, Dec. 2022. https://doi.org/10.1016/j.jobe.2022.105307

A. Rasheed, H. T. Kim, and H. W. Lee, “Modeling-Based Energy Performance Assessment and Validation of Air-To-Water Heat Pump System Integrated with Multi-Span Greenhouse on Cooling Mode,” Agronomy, vol. 12, no. 6, p. 1374, Jun. 2022. https://doi.org/10.3390/agronomy12061374

D. Schiera et al., “A Distributed Multimodel Platform to Cosimulate Multienergy Systems in Smart Buildings,” IEEE Trans Ind Appl, vol. 57, no. 5, pp. 4428–4440, Oct. 2021. https://doi.org/10.1109/TIA.2021.3094497

F. Tahmasebinia, R. Jiang, S. Sepasgozar, J. Wei, Y. Ding, and H. Ma, “Implementation of BIM Energy Analysis and Monte Carlo Simulation for Estimating Building Energy Performance Based on Regression Approach: A Case Study,” Buildings, vol. 12, no. 4, p. 449, Apr. 2022. https://doi.org/10.3390/buildings12040449

J. Cárdenas, G. Osma, C. Caicedo, A. Torres, S. Sánchez, and G. Ordóñez, “Building energy analysis of Electrical Engineering Building from DesignBuilder tool: Calibration and simulations,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2016. https://doi.org/10.1088/1757-899X/138/1/012013

J. Cárdenas-Rangel, J. Jaramillo-Ibarra, and G. Osma-Pinto, “Estimation of the impact of energy efficiency measures recommended by Colombian legislation on the performance of low- and middle-income housing buildings,” Journal of Building Engineering, vol. 52, p. 104402, Jul. 2022. https://doi.org/10.1016/j.jobe.2022.104402

A. M. Bolteya, M. A. Elsayad, O. D. El Monayeri, and A. M. Belal, “Impact of Phase Change Materials on Cooling Demand of an Educational Facility in Cairo, Egypt,” Sustainability, vol. 14, no. 23, p. 15956, Nov. 2022. https://doi.org/10.3390/su142315956

R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi, “Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques,” Journal of Building Engineering, vol. 45, p. 103406, Jan. 2022. https://doi.org/10.1016/j.jobe.2021.103406

N. Fumo and M. A. Rafe Biswas, “Regression analysis for prediction of residential energy consumption,” Renewable and Sustainable Energy Reviews, vol. 47. pp. 332– 343, Jul. 2015. https://doi.org/10.1016/j.rser.2015.03.035

S. Touzani, J. Granderson, and S. Fernandes, “Gradient boosting machine for modeling the energy consumption of commercial buildings,” Energy Build., vol. 158, pp. 1533– 1543, Jan. 2018. https://doi.org/10.1016/j.enbuild.2017.11.039

A. Rahman, V. Srikumar, and A. D. Smith, “Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks,” Appl Energy, vol. 212, pp. 372–385, Feb. 2018. https://doi.org/10.1016/j.apenergy.2017.12.051

C. Robinson et al., “Machine learning approaches for estimating commercial building energy consumption,” Appl Energy, vol. 208, pp. 889–904, Dec. 2017. https://doi.org/10.1016/j.apenergy.2017.09.060

M. Hao, S. Hejiang, L. Junjie, and W. Shen, “Developing window behavior models for residential buildings using XGBoost algorithm,” Energy Build., vol. 205, p. 109564, Dec. 2019. https://doi.org/10.1016/j.enbuild.2019.109564

Y. Liu, H. Chen, L. Zhang, X. Wu, X.-j. Wang, “Energy consumption prediction and diagnosis of public buildings based on support vector machine learning: A case study in China,” J Clean Prod., vol. 272, p. 122542, Nov. 2020. https://doi.org/10.1016/j.jclepro.2020.122542

V. J. Mawson and B. R. Hughes, “Deep learning techniques for energy forecasting and condition monitoring in the manufacturing sector,” Energy Build., vol. 217, p. 109966, Jun. 2020. https://doi.org/10.1016/j.enbuild.2020.109966

M. W. Ahmad, A. Mouraud, Y. Rezgui, and M. Mourshed, “Deep highway networks and tree-based ensemble for predicting short-term building energy consumption,” Energies, vol. 11, no. 12, p. 3408, Dec. 2018. https://doi.org/10.3390/en11123408

L. G. B. Ruiz, M. C. Pegalajar, M. Molina-Solana, and Y.-K. Guo, “A case study on understanding energy consumption through prediction and visualization (VIMOEN),” Journal of Building Engineering, vol. 30, p. 101315, Jul. 2020. https://doi.org/10.1016/j.jobe.2020.101315

S. Walker, W. Khan, K. Katic, W. Maassen, and W. Zeiler, “Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings,” Energy Build., vol. 209, p. 109705, Feb. 2020. https://doi.org/10.1016/j.enbuild.2019.109705

N.-T. Ngo, “Early predicting cooling loads for energy-efficient design in office buildings by machine learning,” Energy Build., vol. 182, pp. 264–273, Jan. 2019. https://doi.org/10.1016/j.enbuild.2018.10.004

X. Godinho, H. Bernardo, F. T. Oliveira, and J. C. Sousa, “Forecasting heating and cooling energy demand in an office building using machine learning methods,” in 2020 International Young Engineers Forum, YEF-ECE, Costa de Caparica, 2020, pp. 1–6. https://doi.org/10.1109/YEF-ECE49388.2020.9171807

J. P. Mueller and L. Massaron, Deep Learning for Dummies, New Jersey, Wiley & Sons, 2019. Deep Learning For Dummies | Wiley

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, The MIT Press, 2016. Deep Learning (deeplearningbook.org)

Z. Yu, F. Haghighat, B. C. M. Fung, and H. Yoshino, “A decision tree method for building energy demand modeling,” Energy Build., vol. 42, no. 10, pp. 1637–1646, Oct. 2010. http://dx.doi.org/10.1016/j.enbuild.2010.04.006

D. Ramos, P. Faria, A. Morais, and Z. Vale, “Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building,” Energy Reports, vol. 8, Suppl. 3, pp. 417–422, Jun. 2022. https://doi.org/10.1016/j.egyr.2022.01.046

K. W. Mui, M. K. Satheesan, and L. T. Wong, “Building cooling energy consumption prediction with a hybrid simulation Approach: Generalization beyond the training range,” Energy Build., vol. 276, p. 112502, Dec. 2022. https://doi.org/10.1016/j.enbuild.2022.112502

H. Yang, M. Ran, and C. Zhuang, “Prediction of Building Electricity Consumption Based on Joinpoint−Multiple Linear Regression,” Energies, vol. 15, no. 22, p. 8543, Nov. 2022. https://doi.org/10.3390/en15228543

X. Han, C. Zhang, Y. Tang, and Y. Ye, “Physical-data Fusion Modeling Method for Energy Consumption Analysis of Smart Building,” Journal of Modern Power Systems and Clean Energy, vol. 10, no. 2, pp. 482–491, Mar. 2022. https://doi.org/10.35833/MPCE.2021.000050

J. Ahmad et al., “Energy demand forecasting of buildings using random neural networks,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4, pp. 4753–4765, Apr. 2020. https://doi.org/10.3233/JIFS-191458

H. S. van der Bent, P. I. van den Brom, H. J. Visscher, A. Meijer, and N. Mouter, “The energy performance of dwellings of Dutch non-profit housing associations: Modelling actual energy consumption,” Energy Build., vol. 253, p. 111486, Dec. 2021. https://doi.org/10.1016/j.enbuild.2021.111486

J. Joe et al., “Development of Simplified Building Energy Prediction Model to Support Policymaking in South Korea—Case Study for Office Buildings,” Sustainability, vol. 14, no. 10, p. 6000, May. 2022. https://doi.org/10.3390/su14106000

M. S. Aliero, M. F. Pasha, A. N. Toosi, and I. Ghani, “The COVID-19 impact on air condition usage: a shift towards residential energy saving,” Environmental Science and Pollution Research, vol. 29, pp. 85727–85741, Jan. 2022. https://doi.org/10.1007/s11356-021-17862-z

Cómo citar
[1]
L. Ortega-Diaz, J. Cárdenas-Rangel, y G. Osma-Pinto, «Estrategias de predicción de consumo energético en edificaciones: una revisión», TecnoL., vol. 26, n.º 58, p. e2650, sep. 2023.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-09-11
Sección
Artículos de revisión

Métricas

Crossref Cited-by logo