Deterioro mecánico por intemperismo del adobe de la capilla de Tausa (Colombia)

Palabras clave: Envejecimiento acelerado, materiales de construcción, ensayos de materiales, efectos de la radiación, ensayos de corte

Resumen

Existe un gran número de estructuras en el mundo construidas en adobe que se deterioran con el tiempo. Normalmente, este deterioro no se tiene en cuenta en análisis de seguridad de estructuras antiguas. El objetivo de este trabajo es proponer una nueva forma de tener en cuenta la influencia del intemperismo sobre las propiedades mecánicas de unidades de adobe. Con este fin, se recuperaron muestras (adobe viejo) de la parte más deteriorada de una capilla de estilo colonial construida en adobe (Tausa, Colombia). También se estudiaron materiales de un depósito local para su restauración (adobe nuevo). Se prepararon muestras del nuevo adobe mediante compactación con humedad controlada. La mitad de las muestras del nuevo adobe se sometieron a condiciones ambientales naturales mientras que la otra mitad y todas las muestras de adobe viejo se sometieron a condiciones ambientales aceleradas usando un equipo con control de radiación UV, temperatura y humedad. Las muestras se evaluaron a diferentes periodos de exposición mediante ensayos de compresión inconfinada y triaxial. Los resultados muestran que el adobe viejo no es sensible a mayor exposición mientras que el nuevo adobe presenta variaciones en rigidez y resistencia. Se observó que dichas propiedades en el adobe nuevo inicialmente se incrementan con la exposición al intemperismo hasta llegar a ser el doble de aquellos obtenidos en las muestras de adobe viejo, pero tienden a reducirse con mayores periodos de exposición. Por lo anterior, se proponen factores de deterioro de hasta dos para análisis de vulnerabilidad y seguridad de nuevas construcciones en estos materiales. Se propusieron factores de deterioro como una primera aproximación a la cuantificación del efecto ambiental en la respuesta mecánica del adobe.

Biografía del autor/a

Javier Camacho Tauta*, Universidad Militar Nueva Granada, Colombia

Universidad Militar Nueva Granada, Bogotá-Colombia, javier.camacho@unimilitar.edu.co

Claudia Uribe-Kaffure, Universidad del Tolima, Colombia

Universidad del Tolima, Ibagué-Colombia, curibek@ut.edu.co

Alfonso Ramos-Cañón, Universidad Nacional de Colombia, Colombia

Universidad Nacional de Colombia, Bogotá-Colombia, amramosc@unal.edu.co

Referencias bibliográficas

B. Cioruta, “Trends in the techniques of design and building traditional earth houses,” Scientific Bulletin Series D: Mining, Mineral Processing, Non-Ferrous Metallurgy, Geology and Environmental Engineering, vol. 30, no. 2, pp. 21-31, 2016. https://www.proquest.com/scholarly-journals/trends-techniques-design-building-traditional/docview/1856858074/se-2?accountid=34489

P. Baquedano, R. R. Eudave, F. N. Miranda, S. Graus, and T. M. Ferreira, “Traditional earth construction in Latin America: A review on the construction systems and reinforcement strategies,” In Masonry Construction in Active Seismic Regions, Woodhead, 2021, pp. 99-121. https://doi.org/10.1016/B978-0-12-821087-1.00011-9

G. Chang Recavarren, C. M. Fiori, and C. Schexnayder, “Rammed Earth: Construction Lessons from Experience,” Practice Periodical on Structural Design and Construction, vol. 18, no. 3, Oct. 2012. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000152

H. D. Smith, “Earthen Construction: Adapting vernacular technologies,” Context, vol. 11, pp. 21-28, 2015. https://www.proquest.com/scholarly-journals/earthen-construction-adapting-vernacular/docview/1709499419/se-2

D. Thompson, C. Augarde, and J. P. Osorio, “A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones,” Journal of Building Engineering, vol. 54, p. 104666, Aug. 2022. https://doi.org/10.1016/J.JOBE.2022.104666

D. Babor and D. Plian, “The Preservation of Adobe Buildings,” Bulletin of the Polytechnic Institute of Jassy, Constructions, Architechture Section, vol. 56, no. 1, pp. 17-26, 2010. http://www.bipcons.ce.tuiasi.ro/Content/ArticleInformation.php?ArticleID=169

G. Aktürk and H. Fluck, “Vernacular Heritage as a Response to Climate: Lessons for Future Climate Resilience from Rize, Turkey,” Land, vol. 11, no. 2, p. 276, Feb. 2022. https://doi.org/10.3390/land11020276

C. López Pérez, D. Ruiz Valencia, S. Jérez Barbosa, P. Quiroga Saavedra, J. Uribe Escamilla, and E. Muñoz Díaz, “Rehabilitación sísmica de muros de adobe de edificaciones monumentales mediante tensores de acero,” Apuntes, vol. 20, no. 2, 304-317, Dec. 2007. http://hdl.handle.net/10554/22922

A. Tavares, A. Costa, and H. Varum, “Common Pathologies in Composite Adobe and Reinforced Concrete Constructions,” Journal of Performance of Constructed Facilities, vol. 26, no. 4, Dec. 2012. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000200

C. T. S. Beckett, P. A. Jaquin, and J. C. Morel, “Weathering the storm: A framework to assess the resistance of earthen structures to water damage,” Constr Build Mater., vol. 242, p. 118098, May 2020. https://doi.org/10.1016/j.conbuildmat.2020.118098

X. Zhang and H. Nowamooz, “Mechanical degradation of unstabilized rammed earth (URE) wall under salts and rising damp attack effect,” Acta Geotechnica., vol. 18, pp. 5029-5046, Mar. 2023. https://doi.org/10.1007/s11440-023-01865-w

A. T. Fazio, A. Cavicchioli, D. S. A. Penna, F. S. Chambergo, and D. L. A. de Faria, “Towards a better comprehension of biodeterioration in earthen architecture: Study of fungi colonisation on historic wall surfaces in Brazil,” J Cult Heritage., vol. 16, no. 6, pp. 934–938, Dec. 2015. https://doi.org/10.1016/j.culher.2015.04.001

R. W. Day, “Performance of Historic Adobe Structure,” Journal of Performance of Constructed Facilities, vol. 7, no. 3, Aug.1993. https://doi.org/10.1061/(asce)0887-3828(1993)7:3(164)

G. Zonno, R. Aguilar, R. Boroschek, and P. B. Lourenço, “Analysis of the long and short-term effects of temperature and humidity on the structural properties of adobe buildings using continuous monitoring,” Eng Struct., vol. 196, p. 109299, Oct. 2019. https://doi.org/10.1016/j.engstruct.2019.109299

E. Quagliarini, S. Lenci, and M. Iorio, “Mechanical properties of adobe walls in a Roman Republican domus at Suasa,” J Cult Heritage., vol. 11, no. 2, pp. 130-137, Jun. 2010. https://doi.org/10.1016/j.culher.2009.01.006

R. Illampas, I. Ioannou, and D. C. Charmpis, “Adobe bricks under compression: Experimental investigation and derivation of stress-strain equation,” Constr Build Mater., vol. 53, pp. 83-90, Feb. 2014. https://doi.org/10.1016/j.conbuildmat.2013.11.103

D. Silveira, H. Varum, A. Costa, and J. Carvalho, “Mechanical Properties and Behavior of Traditional Adobe Wall Panels of the Aveiro District,” Journal of Materials in Civil Engineering, vol. 27, no. 9, Dec. 2014. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001194

G. Ruiz Petrozzi, F. Carbajal, and C. J. Schexnayder, “Restoration of a Historic Adobe Church,” Practice Periodical on Structural Design and Construction, vol. 20, no. 1, Mar. 2014. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000226

A. Sánchez, H. Varum, T. Martins, and J. Fernández, “Mechanical properties of adobe masonry for the rehabilitation of buildings,” Constr Build Mater., vol. 333, p. 127330, May. 2022. https://doi.org/10.1016/J.CONBUILDMAT.2022.127330

L. M. Gil-Martín, M. A. Fernández-Ruiz, and E. Hernández-Montes, “Mechanical characterization and elastic stiffness degradation of unstabilized rammed earth,” Journal of Building Engineering, vol. 56, p. 104805, Sep. 2022. https://doi.org/10.1016/J.JOBE.2022.104805

F. Greco and P. B. Lourenço, “Seismic assessment of large historic vernacular adobe buildings in the Andean Region of Peru. Learning from Casa Arones in cusco,” Journal of Building Engineering, vol. 40, p. 102341, Aug. 2021. https://doi.org/10.1016/j.jobe.2021.102341

N. Tarque, E. Sayın, M. M. Rafi, and E. L. Tolles, “Behaviour of adobe construction in recent earthquakes,” In Structural Characterization and Seismic Retrofitting of Adobe Constructions. Experimental and Numerical Developments, Cham: Springer International Publishing, 2021, pp. 15-33. https://doi.org/10.1007/978-3-030-74737-4_2

J. P. Villacreses, J. Granados, B. Caicedo, P. Torres-Rodas, and F. Yépez, “Seismic and hydromechanical performance of rammed earth walls under changing environmental conditions,” Constr Build Mater., vol. 300, p. 124331, Sep. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124331

A. L. Andrady, S. H. Hamid, X. Hu, and A. Torikai, “Effects of increased solar ultraviolet radiation on materials,” J Photochem Photobiol Biology, vol. 46, no. 1-3, pp. 96-103, Oct. 1998. https://doi.org/10.1016/S1011-1344(98)00188-2

D. Gallipoli et al., “Durability of Earth Materials: Weathering Agents, Testing Procedures and Stabilisation Methods,” In Testing and Characterisation of Earth-based Building Materials and Elements, Springer International Publishing, 2022, pp. 211-241. https://doi.org/10.1007/978-3-030-83297-1_6

Jan. F. Rabek, Polymer Photodegradation: Mechanisms and experimental methods, Dordrecht: Springer Netherlands, 1995. https://doi.org/10.1007/978-94-011-1274-1

Q. B. Bui, J. C. Morel, B. V. Venkatarama Reddy, and W. Ghayad, “Durability of rammed earth walls exposed for 20 years to natural weathering,” Build Environ., vol. 44, no. 5, pp. 912-919, May. 2009. https://doi.org/10.1016/j.buildenv.2008.07.001

D. Ruiz, C. López, S. Unigarro, and M. Domínguez, “Seismic Rehabilitation of Sixteenth- and Seventeenth-Century Rammed Earth–Built Churches in the Andean Highlands: Field and Laboratory Study,” Journal of Performance of Constructed Facilities, vol. 29, no. 6, Mar. 2014. https://doi.org/10.1061/(asce)cf.1943-5509.0000605

D. Ruiz Valencia, C. López Pérez, and J. C. Rivera, “Propuesta de normative para la rehabilitación símica de edificaciones patrimoniales,” Apuntes, vol. 25, no. 2, 226-239, Jul. 2012. https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8767

C. Mendoza Laverde, “Arquitectura religiosa urbana en Colombia durante la dominación española, una sinopsis,” Memoria y Sociedad, vol. 6, no. 12, pp. 23-38, Aug. 2002. https://revistas.javeriana.edu.co/index.php/memoysociedad/article/view/7743

J. C. Rivera Torres, “El adobe y otros materiales de sistemas constructivos en tierra cruda: caracterización con fines estructurales,” Apuntes, vol. 25, no. 2, 164-181, Jul. 2012. https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8763

J. C. Rivera Torres and E. Muñoz Díaz, “Caracterización estructural de materiales de sistemas constructivos en tierra: El adobe,” Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, vol. 5, no. 2, 135-148, 2005. https://www.scipedia.com/public/Torres_Díaz_2005a

Q-Lab Corporation, “QUV Accelerated Weathering Testers,” Accessed: Mar. 30, 2023. Available: http://www.q-lab.com/documents/public/7783bc36-3484-4f92-941d-69df0121f862.pdf

G. ASTM, Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Nonmetallic Materials, ASTM International ,2016. https://doi.org/10.1520/G0154-16

GDS Instruments, Triaxial Testing System (Automated Stress Path Type). 2023. http://www.gdsinstruments.com/gds-products/triaxial-testing-system-automated-stress-path-type

J. Camacho-Tauta, Ó. J. Reyes-Ortiz, and C. Mayorga-Antolínez, “Curado natural y acelerado de una arcilla estabilizada con aceite sulfonado,” Ingeniería y Desarrollo, no. 24, 8-62, Aug. 2008. https://rcientificas.uninorte.edu.co/index.php/ingenieria/article/view/1680

D. ASTM, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, 2016. https://doi.org/10.1520/D2166_D2166M-16

D. ASTM, Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils, ASTM International, 2015. https://doi.org/10.1520/D2850-15

ASTM Committee D-18 on Soil and Rock, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, 2019. https://doi.org/10.1520/D2216-19

A. Arrigoni, C. Beckett, D. Ciancio, and G. Dotelli, “Life cycle analysis of environmental impact vs. durability of stabilised rammed earth,” Construction and Building Materials, vol. 142, pp. 128-136, Jul. 2017. https://doi.org/10.1016/j.conbuildmat.2017.03.066

M. M. Rafi, S. Khan, and M. A. Bhutto, “Experimental Assessment of Mechanical Properties of Adobe Masonry,” Journal of Materials in Civil Engineering, vol. 35, no. 9, Jun. 2023. https://doi.org/10.1061/jmcee7.mteng-15430

P. A. Jaquin, C. E. Augarde, D. Gallipoli, and D. G. Toll, “The strength of unstabilised rammed earth materials,” Géotechnique, vol. 59, no. 5, pp. 487-490, Jun. 2009. https://doi.org/10.1680/geot.2007.00129

Cómo citar
[1]
J. Camacho Tauta*, C. Uribe-Kaffure, y A. Ramos-Cañón, «Deterioro mecánico por intemperismo del adobe de la capilla de Tausa (Colombia)», TecnoL., vol. 26, n.º 58, p. e2733, nov. 2023.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-11-20
Sección
Artículos de investigación

Métricas

Datos de los fondos

Crossref Cited-by logo

Algunos artículos similares: