Modelo de aprendizaje automático para la evaluación del recurso solar primario en Colombia

Palabras clave: Aprendizaje automático, energía renovable, modelo predictivo, predicción climática, radiación solar

Resumen

En este trabajo se presenta un modelo de Aprendizaje Automático (ML por sus siglas en inglés) diseñado para predecir la radiación solar en diversas ciudades que representan la variabilidad climática de Colombia. Destaca afirmar, que la cantidad de energía solar recibida en una región específica está directamente relacionada con la radiación solar y su disponibilidad, la cual se ve afectada por las condiciones climáticas y geográficas particulares de cada área. Ante la alta variabilidad e incertidumbre resultante, se han explorado diversos enfoques, entre ellos, el uso de modelos numéricos para estimar la radiación solar. El objetivo principal de este estudio fue desarrollar y validar un modelo ML que permita predecir con precisión la radiación solar en las ciudades. La metodología empleada fue propia del tratamiento de datos y desarrollo de modelos ML. Se estructuró en tres etapas fundamentales: agrupamiento, estimación y respuesta, al tener en cuenta que el modelo está estructurado con base en datos históricos. Los resultados obtenidos fueron evaluados mediante definiciones estadísticas apropiadas, que no solo determinaron la eficiencia del modelo en términos de predicción, sino que también consideraron las interacciones entre datos para la aproximación y predicción de la radiación solar. En este sentido, es crucial señalar que la investigación contribuye al entendimiento de la radiación solar en el contexto colombiano. Este estudio subraya la importancia de desarrollar modelos ML para predecir la radiación solar, destacando la necesidad de considerar la diversidad climática del país. Los resultados obtenidos, tras la aplicación del modelo, proporcionan información valiosa para comprender y anticipar la disponibilidad de este recurso primario.

Biografía del autor/a

Edgar Darío Obando Paredes, Universidad Cooperativa de Colombia, Colombia

Universidad Cooperativa de Colombia, Medellín-Colombia, edgar.obandop@campusucc.edu.co

Referencias bibliográficas

R. Kent, “Renewables”, Plast. Eng., vol. 74, no. 9, pp. 56–57, Oct. 2018. https://doi.org/10.1002/peng.20026

E. D. Obando, S. X. Carvajal, and J. Pineda Agudelo, “Solar Radiation Prediction Using Machine Learning Techniques: A Review,” IEEE Latin America Transactions, vol. 17, no. 04, pp. 684-697, Apr. 2019. https://doi.org/10.1109/TLA.2019.8891934

S. Ren, Y. Hao, L. Xu, H. Wu, and N. Ba, “Digitalization and energy: How does internet development affect China’s energy consumption?,” Energy Econ., vol. 98, p.105220, Jun. 2021. https://doi.org/10.1016/j.eneco.2021.105220

S. Few, P. Djapic, G. Strbac, J. Nelson, and C. Candelise, “Assessing local costs and impacts of distributed solar PV using high resolution data from across Great Britain,” Renewable Energy, vol. 162, pp. 1140–1150, Dec. 2020. https://doi.org/10.1016/j.renene.2020.08.025

M. Alanazi, M. Mahoor, and A. Khodaei, “Co-optimization generation and transmission planning for maximizing large-scale solar PV integration,” International Journal of Electrical Power and Energy Systems, vol. 118, p. 105723, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105723

G. L. Camacho et al., “Plan Energético Nacional 2020-2050,” Unidad de Planeación Minero-Energética UPME, Accessed: Jun. 22, 2023. Available: https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf

A. Angstrom, “Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation,” Q. J. R. Meteorol. Soc., vol. 50, no. 210, pp. 121–126, Apr. 1924. https://doi.org/10.1002/qj.49705021008

R. Aguiar, and M. Collares-Pereira, “TAG: A time-dependent, autoregressive, Gaussian model for generating synthetic hourly radiation,” Sol. Energy., vol. 49, no. 3, pp. 167–174, Sep. 1992. https://doi.org/https://doi.org/10.1016/0038-092X(92)90068-L

R. Dogniaux, and M. Lemoine, “Classification of radiation sites in terms of different indices of atmospheric transparency,” in Solar Radiation Data, Dordrecht: Springer Netherlands, 1983, pp. 94–107. https://doi.org/https://doi.org/10.1007/978-94-009-7112-7_7

K. K. Gopinathan, “A new model for estimating total solar radiation,” Solar & Wind Technology, vol. 5, no. 1, pp. 107–109, 1988. https://doi.org/https://doi.org/10.1016/0741-983X(88)90096-3

M. R. Rietveld, “A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine”, Agric. Meteorol., vol. 19, no. 2–3, pp. 243–252, Mar-Jun. 1978. https://doi.org/https://doi.org/10.1016/0002-1571(78)90014-6

T. Khatib, A. Mohamed, and K. Sopian, “A review of solar energy modeling techniques”, Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2864–2869, Jun. 2012. https://doi.org/10.1016/j.rser.2012.01.064

L. Wang, O. Kisi, M. Zounemat-Kermani, G. A. Salazar, Z. Zhu, and W. Gong, “Solar radiation prediction using different techniques: Model evaluation and comparison,” Renewable and Sustainable Energy Reviews, vol. 61, pp. 384–397, Aug. 2016. https://doi.org/10.1016/j.rser.2016.04.024

M.S. Mahmodian, R. Rahmani, E.Taslimi, and S. Mekhilef, “Step By Step Analyzing, Modeling and Simulation of Single and Double Array PV system in Different Environmental Variability,” 2012 International Conference on Future Environment and Energy IPCBEE, 2012, pp. 37–42, Available: https://eprints.um.edu.my/4719/

M. Shravanth Vasisht, J. Srinivasan, and S. K. Ramasesha, “Performance of solar photovoltaic installations: Effect of seasonal variations,” Solar Energy, vol. 131, pp. 39–46, Jun. 2016. https://doi.org/10.1016/j.solener.2016.02.013

IRENA, “Renewable Energy Highlights,” Agencia Internacional de las Energías Renovables, Emiratos Árabes Unidos, 2022. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Renewable_energy_highlights_July_2022.pdf?rev=72ddf863ab3d48108f5ee28e72cd6d25&hash=161DACCC9D1F6E486B26477E52D97ECB

J. A. Espinosa, S. Kaisler, F. Armour, and W. Money, “Big Data Redux: New Issues and Challenges Moving Forward,” Proceedings of the 52nd Hawaii International Conference on System Sciences, 2019. https://doi.org/10.24251/hicss.2019.131

X. Zheng, X. Zou, and H. Liu, “Electrical performance comparison of a rooftop photovoltaic system and an open-rack photovoltaic system,” 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 2017, pp. 3258-3261. https://doi.org/10.1109/CCDC.2017.7979068

B. Dietrich, J. Walther, M. Weigold, and E. Abele, “Machine learning based very short term load forecasting of machine tools,” Appl Energy., vol. 276, p. 115440, Oct. 2020. https://doi.org/10.1016/j.apenergy.2020.115440

C. L. Dewangan, S. N. Singh, and S. Chakrabarti, “Combining forecasts of day-ahead solar power,” Energy, vol. 202, p. 117743, Jul. 2020. https://doi.org/10.1016/j.energy.2020.117743

C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105. pp. 569–582, May. 2017. https://doi.org/10.1016/j.renene.2016.12.095

M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, “Review of solar irradiance forecasting methods and a proposition for small-scale insular grids”, Renew. Sustain. Energy Rev., vol. 27, pp. 65–76, Nov. 2013. https://doi.org/10.1016/j.rser.2013.06.042

K. Benmouiza, and A. Cheknane, “Forecasting hourly global solar radiation using hybrid k -means and nonlinear autoregressive neural network models,” Energy Convers Manag., vol. 75, pp. 561–569, Nov. 2013. https://doi.org/10.1016/j.enconman.2013.07.003

I. A. Ibrahim, and T. Khatib, “A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm,” Energy Convers Manag., vol. 138, pp. 413–425, Apr. 2017. https://doi.org/10.1016/j.enconman.2017.02.006

W. Ji, and K. C. Chee, “Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN,” Solar Energy, vol. 85, no. 5, pp. 808–817, May. 2011. https://doi.org/10.1016/j.solener.2011.01.013

J. Caballero-Peña, C. Cadena-Zarate, A. Parrado-Duque, and G. Osma-Pinto, “Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts,” International Journal of Electrical Power and Energy Systems, vol. 138. p. 107900, 2022. https://doi.org/10.1016/j.ijepes.2021.107900

M. Sengupta, A. Habte, S. Wilbert, C. Gueymard, and J. Remund, “Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications.,” 3rd Edition, Golden CO, 2021. https://www.nrel.gov/docs/fy21osti/77635.pdf

M. Waseem, Z. Lin, S. Liu, Z. Zhang, T. Aziz, and D. Khan, “Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources,” Appl Energy., vol. 290, p. 116761, May 2021. https://doi.org/10.1016/j.apenergy.2021.116761

L. Olatomiwa, S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petković, and C. Sudheer, “A support vector machine-firefly algorithm-based model for global solar radiation prediction,” Solar Energy, vol. 115, pp. 632–644, May 2015. https://doi.org/10.1016/j.solener.2015.03.015

J. Fan, L. Wu, X. Ma, H. Zhou, and F. Zhang, “Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions,” Renew Energy, vol. 145, pp. 2034–2045, Jan. 2020. https://doi.org/10.1016/j.renene.2019.07.104

X. Shao, S. Lu, and H. F. Hamann, "Solar radiation forecast with machine learning," 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 2016, pp. 19-22. https://doi.org/10.1109/AM-FPD.2016.7543604

J. Boland, M. David, and P. Lauret, “Short term solar radiation forecasting: Island versus continental sites,” Energy, vol. 113, pp. 186–192, Oct. 2016. https://doi.org/10.1016/j.energy.2016.06.139

C. Voyant, G. Notton, C. Darras, A. Fouilloy, and F. Motte, “Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case,” Energy, vol. 125, pp. 248–257, Apr. 2017. https://doi.org/10.1016/j.energy.2017.02.098

S. Mohseni, A. C. Brent, S. Kelly, and W. N. Browne, “Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review,” Renewable and Sustainable Energy Reviews, vol. 158, p. 112095, Apr. 2022. https://doi.org/10.1016/j.rser.2022.112095

Cómo citar
[1]
E. D. Obando Paredes, «Modelo de aprendizaje automático para la evaluación del recurso solar primario en Colombia», TecnoL., vol. 26, n.º 58, p. e2789, dic. 2023.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2023-12-29
Sección
Artículos de investigación

Métricas

Crossref Cited-by logo

Algunos artículos similares: