Comparative Study of Mathematical Models to Predict the Calorific Value of Mexican Agricultural Wastes

Keywords: Renewable energy sources, biomass, calorific value, proximal analysis, predictive model

Abstract

Agricultural residues represent a pollution problem because they are inadequately disposed of and high volumes of these wastes are generated. Therefore, revaluating them to produce biofuels is attractive, but, for that purpose, their calorific value should be established. Some mathematical models reported in the literature to predict calorific value have considered elemental, structural, and proximal analyses, the latter being the least expensive type. This article compares different mathematical models that have been used to predict calorific value based on elemental analysis in order to 1) evaluate agricultural residues from Mexico (bean straw, wheat straw, rice husks, and coffee husks) and other residues reported in the literature (coconut fibers and husks, garden waste, canola hulls, Jatropha curcas husks, and wheat straw) and 2) determine if the existing models work adequately for Mexican biomasses. Thus, Mexican biomasses were characterized using proximal analyses, and the calorific value of all the biomasses was estimated employing previously reported linear mathematical models. The results, which were compared with experimental values, show that the coefficients of determination of the existing mathematical models are low, particularly when Mexican biomass data are used. The best model to predict the calorific value of Mexican agricultural residues (R2 = 0.72) considers only the content of volatile matter and fixed carbon, in addition to a weak functionality of the ash content. Consequently, mathematical models should be proposed specifically for Mexican biomass.

Author Biographies

Luis Antonio Rodríguez-Romero, Universidad Autónoma de Querétaro, México

Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro-México. lrodriguez506@alumnos.uaq.mx

Claudia Gutiérrez-Antonio, Universidad Autónoma de Querétaro, México

Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro-México, claudia.gutierrez@uaq.mx

Juan Fernando García-Trejo, Universidad Autónoma de Querétaro, México

Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro-México, fernando.garcia@uaq.mx

Ana Angélica Feregrino-Pérez, Universidad Autónoma de Querétaro, México

Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro-México, geli@uaq.mx

References

N. El Basam, “Restructuring future energy generation and supply”, en Distributed Renewable Energies for Off-Grid Communities, Elsevier, 2021, pp. 27–37. https://doi.org/10.1016/B978-0-12-821605-7.00029-5

O. Ellabban; H. Abu-Rub; F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology”, Renew. Sustain. Energy Rev., vol. 39, pp. 748–764, Nov. 2014. https://doi.org/10.1016/j.rser.2014.07.113

J. C. Alberizzi; M. Rossi; M. Renzi, “A MILP algorithm for the optimal sizing of an off-grid hybrid renewable energy system in South Tyrol”, Energy Reports, vol. 6, Sup. 1, pp. 21–26, Feb. 2020. https://doi.org/10.1016/j.egyr.2019.08.012

L. E. Ordoñez-Santos; J. Esparza-Estrada; P. Vanegas-Mahecha, “Potencial agroindustrial del epicarpio de mandarina como alternativa de colorante natural en pan”, TecnoLógicas, vol. 23, nro. 48, pp. 17-29, May. 2020. https://doi.org/10.22430/22565337.1465

Y. A. Villada-Villada; A. Hormaza-Anaguano; N. Casis, “Uso de la cascarilla de arroz para la remoción de azul de metileno en columnas de lecho empacado”, TecnoLógicas, vol. 17, no. 33, pp. 43-54, Aug. 2014. https://doi.org/10.22430/22565337.545

V. M. Ospina-Guarín; R. Buitrago-Sierra; D. P. López-López, “Preparación y caracterización de carbón activado a partir de torta de higuerilla”, TecnoLógicas, vol. 17, no. 32, pp. 75-84, Jan. 2014. https://doi.org/10.22430/22565337.207

International Renewable Energy Agency, (IRENA). 2020. 05 Recycle:Bioenergy https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Sep/CC_05_Recycle_bioenergy_2020.pdf

M. Erol; H. Haykiri-Acma; S. Küçükbayrak, “Calorific value estimation of biomass from their proximate analyses data”, Renew. Energy, vol. 35, no. 1, pp. 170–173, Jan. 2010. https://doi.org/10.1016/j.renene.2009.05.008

ISO 18125. Solid biofuels-Determination of calorific value. 2017. https://www.iso.org/standard/61517.html

C. Sheng; J. L. T. Azevedo, “Estimating the higher heating value of biomass fuels from basic analysis data”, Biomass Bioenerg, vol. 28, no. 5, pp. 499–507, May 2005. https://doi.org/10.1016/j.biombioe.2004.11.008

H. Haykiri-Acma; M. Erol; S. Kucukbayrak, “Estimation of heating values of biomass”, In 2006 RWorld renewable energy congress IX Florence, Italy, pp. 19-25, 2006, Elsevier; ISBN: 0301870372

C.-Y. Yin, “Prediction of higher heating values of biomass from proximate and ultimate analyses”, Fuel, vol. 90, no. 3, pp. 1128–1132, Mar. 2011. https://doi.org/10.1016/j.fuel.2010.11.031

J. Parikh; S. A. Channiwala; G. K. Ghosal, “A correlation for calculating HHV from proximate analysis of solid fuels”, Fuel, vol. 84, no. 5, pp. 487–494, Mar. 2005. https://doi.org/10.1016/j.fuel.2004.10.010

A. J. Callejón-Ferre; B. Velázquez-Martí; J. A. López-Martínez; F. Manzano-Agugliaro, “Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value”, Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 948–955, Feb. 2011. https://doi.org/10.1016/j.rser.2010.11.012

C. Huang; L. Han; X. Liu; Z. Yang, “Models Predicting Calorific Value of Straw from the Ash Content”, Int. J. Green Energy, vol. 5, no. 6, pp. 533–539, Dec. 2008. https://doi.org/10.1080/15435070802498507

C. D. Everard; K. P. McDonnell; C. C. Fagan, “Prediction of biomass gross calorific values using visible and near infrared spectroscopy”, Biomass and Bioenergy, vol. 45, pp. 203–211, Oct. 2012. https://doi.org/10.1016/j.biombioe.2012.06.007

J. Skvaril; K. Kyprianidis; A. Avelin; M. Odlare; E. Dahlquist, “Fast Determination of Fuel Properties in Solid Biofuel Mixtures by Near Infrared Spectroscopy”, Energy Procedia, vol. 105, pp. 1309–1317, May 2017. https://doi.org/10.1016/j.egypro.2017.03.476

J. M. Vargas-Moreno; A. J. Callejón-Ferre; J. Pérez-Alonso; B. Velázquez-Martí, “A review of the mathematical models for predicting the heating value of biomass materials”, Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3065–3083, Jun. 2012. https://doi.org/10.1016/j.rser.2012.02.054

A. Özyuğuran; S. Yaman, “Prediction of Calorific Value of Biomass from Proximate Analysis”, Energy Procedia, vol. 107, pp. 130–136, Feb. 2017. https://doi.org/10.1016/j.egypro.2016.12.149

R. Krishnan; L. Hauchhum; R. Gupta; S. Pattanayak, “Prediction of Equations for Higher Heating Values of Biomass Using Proximate and Ultimate Analysis”, in 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), 2018, pp. 1–5. https://doi.org/10.1109/EPETSG.2018.8658984

Association of Analytical Communities (AOAC), Official Methods of Analysis of AOAC International, Seventeen, AOAC International, Gaithersburg, 2002. http://www.eoma.aoac.org/

I. M. Ríos-Badrán; I. Luzardo-Ocampo; J. F. García-Trejo; J. Santos-Cruz; C. Gutiérrez-Antonio, “Production and characterization of fuel pellets from rice husk and wheat straw”, Renew. Energy, vol. 145, pp. 500–507, Jan. 2020. https://doi.org/10.1016/j.renene.2019.06.048

ASTM D1102-84, Standard Test Method for Ash in Wood, ASTM International, , 2007. https://doi.org/10.1520/D1102-84R07

Hach, Water Analysis Handbook, Loveland, CO, USA, 2015. First. https://www.hach.com/wah

T. Cordero; F. Marquez; J. Rodriguez-Mirasol; J. J. Rodriguez, “Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis”, Fuel, vol. 80, no. 11, pp. 1567–1571, Sep. 2001. https://doi.org/10.1016/S0016-2361(01)00034-5

Z. Liu; A. Quek; R. Balasubramanian, “Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars”, Appl. Energy, vol. 113, pp. 1315–1322, Jan. 2014. https://doi.org/10.1016/j.apenergy.2013.08.087

P. Pradhan; A. Arora; S. M. Mahajani, “Pilot scale evaluation of fuel pellets production from garden waste biomass”, Energy Sustain. Dev., vol. 43, pp. 1–14, Apr. 2018. https://doi.org/10.1016/j.esd.2017.11.005

R. Azargohar et al., “Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets,” Renew. Energy, vol. 132, pp. 296–307, Mar. 2019. https://doi.org/10.1016/j.renene.2018.08.003

V. Ramírez; J. Martí-Herrero; M. Romero; D. Rivadeneira, “Energy use of Jatropha oil extraction wastes: Pellets from biochar and Jatropha shell blends”, J. Clean. Prod., vol. 215, pp. 1095–1102, Apr. 2019. https://doi.org/10.1016/j.jclepro.2019.01.132

L. Azócar; N. Hermosilla; A. Gay, S. Rocha; J. Díaz; P. Jara, “Brown pellet production using wheat straw from southern cities in Chile”, Fuel, vol. 237, pp. 823–832, Feb. 2019. https://doi.org/10.1016/j.fuel.2018.09.039

M. N. Cahyanti; T. R. K. C. Doddapaneni; T. Kikas, “Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements”, Bioresour. Technol., vol. 301, p. 122737, Apr. 2020. https://doi.org/10.1016/j.biortech.2020.122737

D. Trejo‐Zamudio; C. Gutiérrez‐Antonio; J. F. García‐Trejo; A. A. Feregrino‐Pérez; M. Toledano‐Ayala, “Production of fuel pellets from bean crop residues ( Phaseolus vulgaris )”, IET Renew. Power Gener., Dec. 2021. https://doi.org/10.1049/rpg2.12365

M. T. Miranda; F. J. Sepúlveda; J. I. Arranz; I. Montero; C. V. Rojas, “Physical-energy characterization of microalgae Scenedesmus and experimental pellets”, Fuel, vol. 226, pp. 121–126, Aug. 2018. https://doi.org/10.1016/j.fuel.2018.03.097

M. V. Gil; P. Oulego; M. D. Casal; C. Pevida, J. J. Pis; F. Rubiera, “Mechanical durability and combustion characteristics of pellets from biomass blends”, Bioresour. Technol., vol. 101, no. 22, pp. 8859–8867, Nov. 2010. https://doi.org/10.1016/j.biortech.2010.06.062

M. U. Hossain; S.-Y. Leu; C. S. Poon, “Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong”, J. Clean. Prod., vol. 113, pp. 400–410, Feb. 2016. https://doi.org/10.1016/j.jclepro.2015.11.069

P. Grammelis; N. Margaritis; D. S. Kourkoumpas, 4.27 Pyrolysis Energy Conversion Systems, en Comprehensive Energy Systems, Elsevier, Vol. 4, p. 1065-1106, 2018. http://144.76.89.142:8081/science/article/pii/B9780128095973004454

S. V. Vassilev; D. Baxter; L. K. Andersen; C. G. Vassileva, “An overview of the chemical composition of biomass”, Fuel, vol. 89, no. 5, pp. 913–933, May 2010. https://doi.org/10.1016/j.fuel.2009.10.022

How to Cite
[1]
L. A. Rodríguez-Romero, C. Gutiérrez-Antonio, J. F. García-Trejo, and A. A. Feregrino-Pérez, “Comparative Study of Mathematical Models to Predict the Calorific Value of Mexican Agricultural Wastes”, TecnoL., vol. 25, no. 53, p. e2142, Feb. 2022.

Downloads

Download data is not yet available.
Published
2022-02-28
Section
Research Papers
Crossref Cited-by logo

More on this topic