Obtaining lipids and carbohydrates from microalgae via design of selective culture media

  • Ana M. Ardila-Álvarez Universidad Nacional Abierta y a Distancia
  • Yaritza López-Matos Universidad Industrial de Santander
  • Marlys E. Vásquez-Cáceres Universidad Industrial de Santander
  • Ángel D. González-Delgado Universidad de Cartagena
  • Andrés F. Barajas-Solano Universidad de Santander UDES
Keywords: Mixotrophic cultures, chlorella vulgaris, nutrients, carbohydrates, lipids.


Sustainable production of microalgae biorefineries presents several technical bottlenecks in different levels, including maximization of productivity of energy blocks as carbohydrates and lipids, which can be used as feedstocks for biodiesel and bioethanol production. An alternative for increasing productivity of energy blocks is the use of alternative crops to traditional chemical media, which are based on carbon, phosphorus, nitrogen sources and microelements. This work presents the design of two mixotrophic crops were designed at different concentrations of carbon, nitrogen and phosphate sources with the aim of evaluating the carbohydrates and lipids production from Chlorella vulgaris. The culture media were designed at different concentrations of sodium nitrate, potassium phosphate and sodium acetate / ammonium carbonate as carbon source. In addition, Pareto charts and Response Surface were performed using the statistical software STATISTICA 7.0, in order to know the significant influence of study variables on metabolites production. Results showed that the concentration of nutrients in the mixotrophic cultures affect the production of metabolites, for the case of carbohydrates production, acetate, carbonate and phosphate had a positive effect on it. Regarding lipids production, when the culture media contained acetate, there was not any variable that influenced significantly, whereas for the cultivation with ammonium carbonate, nitrate and interactions carbonate-phosphate, nitrate-phosphate had a significant influence on production of this metabolite.

Author Biographies

Ana M. Ardila-Álvarez, Universidad Nacional Abierta y a Distancia
MSc. en Ingeniería Química, Escuela de Ciencias Agrícolas Pecuarias y del Medio Ambiente -ECAPMA, Universidad Nacional Abierta y a Distancia, Bucaramanga
Yaritza López-Matos, Universidad Industrial de Santander
Ingeniera Química, Universidad Industrial de Santander, Bucaramanga
Marlys E. Vásquez-Cáceres, Universidad Industrial de Santander
Ingeniera Química, Universidad Industrial de Santander, Bucaramanga
Ángel D. González-Delgado, Universidad de Cartagena
PhD. en Ingeniería Química, Facultad de Ingeniería, Universidad de Cartagena, Cartagena
Andrés F. Barajas-Solano, Universidad de Santander UDES
PhD. en Ingeniería Química, Grupo Ambiental de Investigación Aplicada-GAIA, Facultad de Ingenierías, Universidad de Santander UDES, Bucaramanga


Á.-D. G.-D. and V. Kafarov, “Microalgae based biorefineries: issues to consider,” Ciencia, Tecnol. y Futur., vol. 4, no. 4, pp. 5–22, 2011.

T. M. Mata, A. A. Martins, O. Oliveira, S. Oliveira, A. M. Mendes, and N. S. Caetano, “Lipid content and productivity of arthrospira platensis and chlorella vulgaris under mixotrophic conditions and salinity stress,” Chem. Eng. Trans., vol. 49, pp. 187–192, 2016.

M.-K. Ji, H.-S. Yun, B. S. Hwang, A. N. Kabra, B.-H. Jeon, and J. Choi, “Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production,” Ecol. Eng., vol. 95, pp. 527–533, Oct. 2016.

L. Estévez, A. Barajas, C. Barajas, and V. Kafarov, “Improvement Of Lipid Productivity On Chlorella Vulgaris Using Waste Glycerol And Sodium Acetate,” CT&F - Ciencia, Tecnol. y Futur., vol. 5, no. 2, pp. 113–126, 2013.

R. A. E. F. Hamouda, N. M. Sorour, and D. S. Yeheia, “Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions,” Int. Biodeterior. Biodegradation, vol. 112, pp. 128–134, Aug. 2016.

J. Studer, J. Laue, and M. Koller, Bodendynamik: Grundlagen, Kennziffern, Probleme und Lösungsansätze, 3rd ed. Berlin: Springer, 2007.

V. Bhola, R. Desikan, S. K. Santosh, K. Subburamu, E. Sanniyasi, and F. Bux, “Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris,” J. Biosci. Bioeng., vol. 111, no. 3, pp. 377–382, Mar. 2011.

S. Zhu, W. Huang, J. Xu, Z. Wang, J. Xu, and Z. Yuan, “Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis,” Bioresour. Technol., vol. 152, pp. 292–298, Jan. 2014.

K. Paranjape, G. B. Leite, and P. C. Hallenbeck, “Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol,” Bioresour. Technol., vol. 214, pp. 778–786, Aug. 2016.

Y. Gao, M. Yang, and C. Wang, “Nutrient deprivation enhances lipid content in marine microalgae,” Bioresour. Technol., vol. 147, pp. 484–491, Nov. 2013.

K. Gautam, A. Pareek, and D. K. Sharma, “Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources,” J. Biosci. Bioeng., vol. 116, no. 5, pp. 624–627, Nov. 2013.

T.-S. Lin and J.-Y. Wu, “Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition,” Bioresour. Technol., vol. 184, pp. 100–107, May 2015.

P. J. H. and M. M. W. R. A. Andersen, J. A. Berges, “Appendix A- Recipes for Freshwater and Seawater Media.,” in In R.A. Andersen, A. C. Techniques, Ed. Burlington, MA, 2005, pp. 429–538.

M. DuBois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Anal. Chem., vol. 28, no. 3, pp. 350–356, Mar. 1956.

E. García-Martínez, B. Ayala-Torres, O. Reyes-Gómez, A. Zuorro, A. Barajas-Solano, and C. Barajas-Ferreira, “Evaluation of a two-phase extraction system of carbohydrates and proteins from chlorella vulgaris utex 1803,” Chem. Eng. Trans., vol. 49, pp. 355–360, 2016.

Y. Chen and S. Vaidyanathan, “A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids,” Anal. Chim. Acta, vol. 724, pp. 67–72, Apr. 2012.

G. Dragone, B. D. Fernándes, A. P. Abreu, A. A. Vicente, and J. A. Teixeira, “Nutrient limitation as a strategy for increasing starch accumulation in microalgae,” Appl. Energy, vol. 88, no. 10, pp. 3331–3335, Oct. 2011.

Y. Liang, N. Sarkany, and Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions,” Biotechnol. Lett., vol. 31, no. 7, pp. 1043–1049, Jul. 2009.

B. Degrenne, J. Pruvost, G. Christophe, J. F. Cornet, G. Cogne, and J. Legrand, “Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii,” Int. J. Hydrogen Energy, vol. 35, no. 19, pp. 10741–10749, Oct. 2010.

J. Fábregas, J. Abalde, and C. Herrero, “Biochemical composition and growth of the marine microalga Dunaliella tertiolecta (Butcher) with different ammonium nitrogen concentrations as chloride, sulphate, nitrate and carbonate,” Aquaculture, vol. 83, no. 3–4, pp. 289–304, Dec. 1989.

V. K. A. Y. Pinzón, Á. D. González-Delgado, “Optimization of microalgae composition for development of a topology of biorefinery based on profitability analysis,” Chem. Eng. Trans., vol. 37, pp. 457–462, 20014.

L. T. Porras Cárdenas and C. E. Prada Rodríguez, “Efecto del tiempo de cultivo en la productividad de metabolitos de valor agregado en Chlorella vulgaris UTEX 1803,” Universidad Industrial de Santander, 2012.

Á. D. G.-D. V. Kafarov, M. El Halwagi, “Development of a topology of microalgae-based biorefinery: process synthesis and optimization using a combined forward–backward screening and superstructure approach,” Clean Technol. Environ. Policy, vol. 17, no. 8, pp. 2213–2228, 2015.

How to Cite
A. M. Ardila-Álvarez, Y. López-Matos, M. E. Vásquez-Cáceres, Ángel D. González-Delgado, and A. F. Barajas-Solano, “Obtaining lipids and carbohydrates from microalgae via design of selective culture media”, TecnoL., vol. 20, no. 38, pp. 83-94, Feb. 2017.


Download data is not yet available.
Research Papers