Cargador de baterías fotovoltaico con control por modos deslizantes y limitación de la derivada de corriente de carga

  • Carlos A. Ramos-Paja Universidad Nacional de Colombia
  • Andrés J. Saavedra-Montes Universidad Nacional de Colombia
  • Juan D. Bastidas-Rodríguez Universidad Industrial de Santander
Palabras clave: Cargador baterías, panel fotovoltaico, convertidor Buck, control por modos deslizantes, limitación derivada de corriente

Resumen

En los sistemas fotovoltaicos (PV) aislados, los cargadores de baterías son importantes para garantizar el suministro de energía cuando la luz solar no está disponible. Dichos cargadores necesitan realizar el seguimiento del punto de máxima potencia (MPPT) y limitar la derivada de corriente de carga de las baterías para extender su vida útil. Este artículo propone un sistema cargador de baterías compuesto por un convertidor Buck, un control en cascada de la corriente de las baterías y la tensión del panel PV, y la técnica de MPPT Perturbar y Observar (P&O). El P&O genera la referencia de tensión del panel para el lazo externo del control en cascada, implementado con un regulador P, cuya acción de control es la referencia de la corriente de carga de las baterías. Dicha referencia de corriente pasa por un limitador de derivada antes de llegar al lazo interno de control de corriente de las baterías, el cual es implementado con un control por modos deslizantes (SMC). El artículo incluye el análisis de transversalidad y alcanzabilidad del SMC, así como el procedimiento de diseño del regulador P. El sistema propuesto se valida por medio de simulaciones en el software PSIM mostrando la capacidad de realizar el MPPT y limitar la derivada de corriente de carga de las baterías al mismo tiempo.

Biografía del autor/a

Carlos A. Ramos-Paja, Universidad Nacional de Colombia

PhD en Ingeniería Electrónica, Automática y Comunicaciones, Magíster en
Ingeniería Énfasis en Automática, Magíster en Ingeniería Electrónica
Ingeniero Electrónico, Departamento de Energía Eléctrica y Automática

Andrés J. Saavedra-Montes, Universidad Nacional de Colombia

PhD en Ingeniería, Magíster en Sistemas de Generación de Energía Eléctrica
Ingeniero Electricista, Departamento de Energía Eléctrica y Automática

Juan D. Bastidas-Rodríguez, Universidad Industrial de Santander

PhD en Ingeniería, Ingeniero Electrónico, Escuela de Ingenierías Eléctrica,
Electrónica y de Telecomunicaciones

Referencias bibliográficas

[1] REN21, “Advancing the global renewable
energy transition,” 2017.
[2] IEA-PVPS, “2016 Snapshot of Global Photovoltaic Markets,” 2017.
[3] IDEAM, “Atlas de radiación solar,
ultravioleta y ozono de Colombia,” Atlas,
2014. [Online]. Available:
http://atlas.ideam.gov.co/visorAtlasRadiacion
.html.
[4] World Bank Group, “Global Solar Atlas,”
2016. [Online]. Available:
https://olc.worldbank.org/content/globalsolar-
atlas.
[5] F. Palmiro, R. Rayudu, and R. Ford,
“Modelling and simulation of a solar PV
lithium ion battery charger for energy kiosks
application,” in 2015 IEEE PES Asia-Pacific
Power and Energy Engineering Conference
(APPEEC), 2015, vol. 3, pp. 1–5.
[6] R. A. Messenger and J. Ventre, Photovoltaics
Systems Engineering, Second. Boca Raton,
London, New York, Washigton D.C.: Taylor
& Francis, 2004.
[7] Y. E. Abu Eldahab, N. H. Saad, and A.
Zekry, “Enhancing the design of battery
charging controllers for photovoltaic
systems,” Renew. Sustain. Energy Rev., vol.
58, pp. 646–655, May 2016.
[8] J. López, S. I. Seleme, P. F. Donoso, L. M. F.
Morais, P. C. Cortizo, and M. A. Severo,
“Digital control strategy for a buck converter
operating as a battery charger for standalone
photovoltaic systems,” Sol. Energy, vol.
140, pp. 171–187, Dec. 2016.
[9] A. M. Gee, F. V. P. Robinson, and R. W.
Dunn, “Analysis of Battery Lifetime
Extension in a Small-Scale Wind-Energy
System Using Supercapacitors,” IEEE Trans.
Energy Convers., vol. 28, no. 1, pp. 24–33,
Mar. 2013.
[10] J. Li, A. M. Gee, M. Zhang, and W. Yuan,
“Analysis of battery lifetime extension in a
SMES-battery hybrid energy storage system
using a novel battery lifetime model,”
Energy, vol. 86, pp. 175–185, Jun. 2015.
[11] G. Ning, B. Haran, and B. N. Popov,
“Capacity fade study of lithium-ion batteries
cycled at high discharge rates,” J. Power
Sources, vol. 117, no. 1–2, pp. 160–169, May
2003.
[12] J. Li, R. Xiong, Q. Yang, F. Liang, M. Zhang,
and W. Yuan, “Design/test of a hybrid energy
storage system for primary frequency control
using a dynamic droop method in an isolated
microgrid power system,” Appl. Energy, vol.
201, pp. 257–269, Sep. 2017.
[13] J. Li, Q. Yang, F. Robinson, F. Liang, M.
Zhang, and W. Yuan, “Design and test of a
new droop control algorithm for a
SMES/battery hybrid energy storage
system,” Energy, vol. 118, pp. 1110–1122,
Jan. 2017.
[14] Sony Energy Devices Corporation and Device
Solutions Business Group, “Lithium Ion
Rechargeable Battery Technical
Information,” 2012.
[15] E. A. Jiménez-Brea, E. I. Ortiz-Rivera, A.
Salazar-Llinás, and J. González-Llorente,
“Simple photovoltaic solar cell dynamic
sliding mode controlled maximum power
point tracker for battery charging
applications,” in Conference Proceedings -
IEEE Applied Power Electronics Conference
and Exposition - APEC, 2010, pp. 666–671.
[16] A. M. S. S. Andrade, E. Mattos, C. O. Gamba,
L. Schuch, and M. L. da S. Martins, “Design
and implementation of PV power zeta
converters for battery charger applications,”
in 2015 IEEE Energy Conversion Congress
and Exposition (ECCE), 2015, pp. 3135–
3142.
[17] A. M. S. S. Andrade, L. Schuch, and M. L. da
S. Martins, “Photovoltaic battery charger
based on the Zeta converter: Analysis, design
and experimental results,” in 2015 IEEE
24th International Symposium on Industrial
Electronics (ISIE), 2015, pp. 379–384.
[18] A. M. S. S. Andrade, R. C. Beltrame, L.
Schuch, and M. L. da S. Martins, “PV
module-integrated single-switch DC/DC
converter for PV energy harvest with battery
charge capability,” in 2014 11th IEEE/IAS
International Conference on Industry
Applications, 2014, vol. 1, pp. 1–8.
[19] D. G. Montoya, C. A. Ramos-Paja, and R.
Giral, “Improved Design of Sliding-Mode
Controllers Based on the Requirements of
MPPT Techniques,” IEEE Trans. Power
Electron., vol. 31, no. 1, pp. 235–247, Jan.
2016.
[20] D. González-Montoya, C. A. Ramos-Paja, and
R. Giral, “Maximum power point tracking of
photovoltaic systems based on the sliding
mode control of the module admittance,”
Electr. Power Syst. Res., vol. 136, pp. 125–
134, Jul. 2016.
[21] R. Haroun, A. El Aroudi, A. Cid-Pastor, G.
Garica, C. Olalla, and L. Martinez-Salamero,
“Impedance Matching in Photovoltaic
Systems Using Cascaded Boost Converters
and Sliding-Mode Control,” IEEE Trans.
Power Electron., vol. 30, no. 6, pp. 3185–
3199, Jun. 2015.
[22] A. Cid-Pastor, L. Martínez-Salamero, A. El
Aroudi, R. Giral, J. Calvente, and R. Leyva,
“Synthesis of loss-free resistors based on
sliding-mode control and its applications in
power processing,” Control Eng. Pract., vol.
21, no. 5, pp. 689–699, May 2013.
[23] J. Guacaneme, D. González, and C. Trujillo,
“Controlador difuso inteligente para un
cargador de baterías de plomo-ácido,”
Ingeniería, vol. 8, no. 2, pp. 62–67, 2003.
[24] SMA, “Technical Information Battery
Management of the Sunny Island,” 2017.
[25] O. López-Santos, D. A. Zambrano Prada, Y.
A. Aldana-Rodríguez, H. A. Esquivel-Cabeza,
G. García, and L. Martínez-Salamero,
“Control of a Bidirectional Cûk Converter
Providing Charge/Discharge of a Battery
Array Integrated in DC Buses of Microgrids,”
in Applied Computer Sciences in
Engineering, J. C. Figueroa-García, E. R.
López-Santana, J. L. Villa-Ramírez, and R.
Ferro-Escobar, Eds. Cham: Springer
International Publishing, 2017, pp. 495–507.
[26] M. E. Sahin, H. I. Okumus, and H. Kahveci,
“Sliding mode control of PV powered DC/DC
Buck-Boost converter with digital signal
processor,” in 2015 17th European
Conference on Power Electronics and
Applications (EPE’15 ECCE-Europe), 2015,
pp. 1–8.
[27] N. Femia, G. Petrone, G. Spagnuolo, and M.
Vitelli, “Optimization of Perturb and
Observe Maximum Power Point Tracking
Method,” IEEE Trans. Power Electron., vol.
20, no. 4, pp. 963–973, Jul. 2005.
[28] G. Petrone and C. A. Ramos-Paja, “Modeling
of photovoltaic fields in mismatched
conditions for energy yield evaluations,”
Electr. Power Syst. Res., vol. 81, no. 4, pp.
1003–1013, Apr. 2011.
[29] Y.-C. Chuang and Y.-L. Ke, “Analysis and
implementation of zero voltage switching
integrated buck-flyback converter,” IET
Power Electron., vol. 6, no. 7, pp. 2846–2852,
2011.
[30] Siew-Chong Tan, Y. M. Lai, and C. K. Tse,
“General Design Issues of Sliding-Mode
Controllers in DC–DC Converters,” IEEE
Trans. Ind. Electron., vol. 55, no. 3, pp.
1160–1174, Mar. 2008.
[31] H. Sira-Ramírez, “Sliding Motions in
Bilinear Switched Networks,” IEEE Trans.
Circuits Syst., vol. 34, no. 8, pp. 919–933,
1987.
[32] P. A. Ortiz-Valencia and C. A. Ramos-Paja,
“Sliding-mode controller for maximum power
point tracking in grid-connected photovoltaic
systems,” Energies, vol. 8, no. 11, pp. 12363–
12387, 2015.
[33] C. A. Ramos-Paja, D. González, and A. J.
Saavedra-Montes, “Accurate calculation of
settling time in second order systems: A
photovoltaic application,” Rev. Fac. Ing.
Univ. Antioquia, no. 66, pp. 104–117, 2013.
[34] T. Green, “TI Precision Designs: Reference
Design - Single Op-Amp Slew Rate Limiter,”
Texas Instruments Incorporated, 2013.
[35] Digatron, “Universal Battery Tester ME
Series,” Digatron. [Online]. Available:
http://www.digatron.com/zh/automotivebattery/
universal-battery-tester/.
[36] Bitrode, “MCV-EV/HEV Battery Cell
Testter,” 2015. [Online]. Available:
http://www.bitrode.com/model-mcv/.
Cómo citar
[1]
C. A. Ramos-Paja, A. J. Saavedra-Montes, y J. D. Bastidas-Rodríguez, «Cargador de baterías fotovoltaico con control por modos deslizantes y limitación de la derivada de corriente de carga», TecnoL., vol. 21, n.º 42, pp. 129–145, may 2018.

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2018-05-14
Sección
Artículos de investigación

Métricas