Comparison and Validation of Models for the Design of Optimal Economic Pipe Diameters: A Case Study in the Anseba Region, Eritrea

Keywords: Optimal pipe size design, Pressurized flow network, Life-cycle cost analysis model, Empirical equation models, Statistical analysis

Abstract

An optimal design for a pressurized flow pipe network is characterized by being economical and contributing the least amount of losses during water transmission through the system. The diameter of a pipe in a network system that delivers the desired effect with the minimum amount of waste and expenses is referred to as an optimal pipe size. The Life-Cycle Cost Analysis (LCCA) model is widely recognized as the recommended standard technique to estimate the optimal pipe size for any pipe flow network system. Numerous empirical formulas have been proposed to simplify the computations required in this economic analysis model. This study seeks to compare the various empirical models that have been proposed by different authors based on a variety of physical variables involved in fluid flow dynamics. Eleven different empirical equations were chosen in order to select the optimal diameter for the network at the Hamelmalo Agricultural College farm located in the Anseba region of Eritrea for the distribution of water to the different sub-plots. The estimated diameters were compared to the standard diameter calculated using the standard LCCA method. This comparison was based on the estimated total head losses and economic analysis of the pipe diameters chosen for such network. Moreover, a statistical analysis was conducted to obtain the best-fit recommended modeled diameter for the network. The Bresse’s model performance was the most adequate when compared with the LCCA model.

Author Biographies

Aanandsundar Arumugam*, Alma Mater Studiorum Università di Bologna, Italy

Alma Mater Studiorum Università di Bologna, Italy, College of Engineering and Technology Mai Nefhi, Bologna-Italy aanandsunda.arumugam@studio.unibo.it

Sobana Subramani, Easwari Engineering College, India

Easwari Engineering College, Affiliated to Anna University, Chennai-India, sobana.s@eec.srmrmp.edu.in

Haben Kibrom, Hamelmalo Agricultural College, Eritrea

Hamelmalo Agricultural College, Keren-Eritrea, habenkibrom1334@gmail.com

Medhanie Gebreamlak, Hamelmalo Agricultural College, Eritrea

Hamelmalo Agricultural College, Keren-Eritrea, medhaniegebreamlak678@gmail.com

Michael Mengstu, Hamelmalo Agricultural College, Eritrea

Hamelmalo Agricultural College, Keren-Eritrea, michaelmengstu555@gmail.com

Merhawit Teame, Hamelmalo Agricultural College, Eritrea

Hamelmalo Agricultural College, Keren-Eritrea, merhawitteame555@gmail.com

References

[[1] A. Sonowal; S. C. Senapati; S. Adamala, “A Mathematical Model for the Selection of an Economical Pipe Size in Pressurized Irrigation Systems”, Afr. J. Agric. Res, vol. 11, no. 8, pp. 683-692, Feb. 2016. http://dx.doi.org/10.5897/AJAR2015.10648

R. W. Whitesides, “Selecting the Optimum Pipe Size” PDH Online Course M270 (12 PDH), 2012. https://pdhonline.com/courses/m270/m270content.pdf

A. Bedjaoui; B. Achour; M.T. Bouziane, “NouvelleApprochePour Le Calcul du DiametreEconomiquedans les Conduites de Refoulement,” Courrier du Savoir, vol. 6, no. 6, pp. 141-145, Jun. 2005. https://www.asjp.cerist.dz/en/article/77967

G. K. Roy, “Prediction of Optimum Economic pipe Diameter by Nomograph, Journal of the Institution of Engineers vol. 68, no. 3, pp. 83-85, Jun. 1988. http://dspace.nitrkl.ac.in/dspace/bitstream/2080/953/1/gkroy%2060.pdf

J.N. Adams, “Quickly Estimate Pipe Sizing with ‘Jack’s Cube’”, Chemical Engineering Progress, vol. 93, no. 12, pp. 55-58, Dec. 1997.

F.M. Sani; S. Huizinga; K. A. Esaklul; S. Nesic, “Review of the API RP 14E Erosional Velocity Equation: Origin, Applications, Misuses, Limitations and Alternatives”, Wear, vol. 426-427, pp. 620-636, Apr. 2019. https://doi.org/10.1016/j.wear.2019.01.119

M. R. Sakr; E. A. Gooda, “Economical Velocity through Pipeline Networks ‘Case Studies of Several Different Markets’”, Alexandria Engineering Journal, vol. 57, no. 4, pp. 2999-3007, Dec. 2018. https://doi.org/10.1016/j.aej.2018.05.001

A. P. Savva; K. Frenken, “Planning, Development Monitoring and Evaluation of Irrigated Agriculture with Farmer Participation”, in Irrigation Manual, Southern Africa: Food and Agriculture Organization of the United Nations (FAO), vol. 2, no.7, 2002. https://www.fao.org/3/ai599e/ai599e.pdf

V. E. M. G. Diniz; P.A. Souza, “Four Explicit Formulae for Friction Factor Calculations in Pipe Flow”, WIT Transactions on Ecology and the Environment, vol.125, pp. 369-380, 2009. http://dx.doi.org/10.2495/WRM090331

J. L. Zocoler; F. C. B. Filho; L.A.F. Oliveira; F.B.T.Hernandez, “Model for determining Flow Diameter and Economic Velocity in Water Elevating Systems”, Math. Probl. Eng, vol. 2006, pp.1-17, Jun. 2006. http://dx.doi.org/10.1155/MPE/2006/17263

A. Arumugam; H. Kibrom; M. Gebreamlak; M. Teame; M. Mengstu, “Modeling of Pipe diameter using Velocity Method for Pressurized Flow Pipe Network at Hamelmalo Agricultural College- A Case Study”, Ann. Fac. Eng. Hunedoara- International Journal of Engineering, vol. 18, no. 3, pp. 85-92, Aug. 2020. http://annals.fih.upt.ro/pdf-full/2020/ANNALS-2020-3-10.pdf

F. Du; G. J. Woods; D. Kang; K.E. Lansey; R. G. Arnold, “Life Cycle Analysis for Water and Wastewater Pipe Materials”, Journal of Environmental Engineering, vol. 139, no.5, pp. 703-711, May. 2013. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000638

S.J. Van Vuuren, “Application of genetic algorithms- Determination of the optimal pipe diameters”, Water SA, vol. 28, no. 2, pp. 217-226, Mar. 2002. http://dx.doi.org/10.4314/wsa.v28i2.4888

R. H. Mohtar; V. F. Bralts; W. H. Shayya, “A Finite Element Model for the Analysis and Optimization of Pipe Networks”, Transactions of the ASAE, vol. 34, no. 2, pp. 393-401, Mar. 1991. http://dx.doi.org/10.13031/2013.31674

A. R. Simpson; G. C. Dandy; L. J. Murphy, “Genetic Algorithms compared to other Techniques for Pipe Optimization”,J.WaterResour. Plan. Manag, vol.120, no. 4, pp. 423-443, Jul. 1994. http://dx.doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)

R. E. Featherstone; K.K. El-Jumaily, “Optimal Diameter selection for Pipe Networks”,Journal of Hydraulic Engineering, vol. 109, no. 2, pp. 221-234, Feb. 1983. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:2(221)

R. B. Shrestha et al., “Protocol for Reviving Springs in the Hindu Kush Himalaya: A Practitioner’s Manual”, International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, 2018. http://nhp.mowr.gov.in/docs/NHP/MISCELLANEOUS/MISCELLANEOUS/1271/SpringManual04-2018.pdf

S. Folkman, “Validation of the long life of PVC Pipes”, In Proceedings of the 17th Plastic Pipes Conference PPXVII, Chicago, 2014, pp. 1-9. http://www.thinkpipesthinkpvc.com.au/images/pdfs/17_Plastic_Pipe_Conference/Steven_FOLKMAN_2A.pdf

B. K. Saleh; R. W. Kasili; E. G. Mamati; W. Araia; A. B. Nyende, “Classification of Local Pepper Collections (Capsicum spp.) from Eritrea using Morphological Traits”, Am. J. Plant Sci, vol. 7, no. 3, pp. 590-600, Mar.2016. http://dx.doi.org/10.4236/ajps.2016.73052

A. Omer et al., “Design of Optimal Irrigation Pipe Network for Hamelmalo Agricultural College Farm”, (Bachelor thesis), Department of Agricultural Engineering, Hamelmalo Agricultural College, Keren, 2013.

R. D. Sonar; S. V. Alashi; D. C. Pawar; S. K. Deshmukh; S. H. Ambekar; T. M. Patil.,“Design and Manufacturing of PVC Pipe Chassis for Electric Cart”,IJARIIE, vol. 6, no. 2, pp. 20-30, 2020.https://ijariie.com/AdminUploadPdf/DESIGN_AND_MANUFACTURING_OF_PVC_PIPE_CHASSIS_FOR_ELECTRIC_CART_ijariie11490.pdf

Engineering ToolBox, “Comparing Friction Loss in Steel, Copper and Plastic Pipes. Water flow and friction head loss (ft/100 ft) in steel, copper and PVC plastic pipes”, 2004. https://www.engineeringtoolbox.com/friction-loss-copper-steel-plastic-pipes-d_807.html

M. Annan; E. A. Gooda, “Effect of Minor Losses during Steady Flow in Transmission Pipelines- Case Study ‘Water Transmission System Upgrade in Northern Saudi Arabia”, Alex. Eng. J, vol. 57, no. 4, pp. 4299-4305, Dec. 2018. https://doi.org/10.1016/j.aej.2018.12.002

Kahramaa, “Principles for Water Network Design”, KAHRAMAA, Doha, 2014.

D. Brkić; P. Praks, “Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-Function”,Mathematics, vol. 7, no. 1, pp. 1-15, Dec. 2018. https://doi.org/10.3390/math7010034

J. Keller; R. D. Bliesner, Sprinkle and Trickle Irrigation, Van Nostrand Reinhold, 1990.

C. H. de Araujo Gama; V. C.Borges de Souza; N. H. Callado, “Analysis of Methodologies for Determination of the Economic Pipe Diameter”,RBRH,vol. 24, no. 35, pp. 1-8, Aug. 2019. https://doi.org/10.1590/2318-0331.241920180148

B. G. Bataller, “Pipe and Tube Sizing”, Lecture on ChE 192”. https://dokumen.tips/documents/pipe-and-tube-sizing.html

H. M. Paula, “Sistemas Prediais de combate a lncȇndio Hidrantes”, Departamento de Engenharia Civil Disciplina: Sistemas Prediais 2, Notas de Aula”, 2011.https://silo.tips/download/notas-de-aula-sistemas-prediais-de-combate-a-incendio-hidrantes

S. B. Genić; B. M. Jaćimović; V. B. Genić, “Economic Optimization of pipe diameter for complete turbulence”, Energy and Buildings, vol.45, pp. 335-338, Feb. 2012. http://dx.doi.org/10.1016/j.enbuild.2011.10.054

P. Bogawski; E. Bednorz, “Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)”, Water Resources Management, vol. 28, no. 14, pp. 5021-5038, Sep. 2014. http://dx.doi.org/10.1007/s11269-014-0787-8

S. Alexandris; R. Stricevic; S. Petkovic, “Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman-Monteith formula”, European Water, vol. 21/22, pp. 17-28, Jan. 2008. https://www.ewra.net/ew/pdf/EW_2008_21-22_02.pdf

C.J. Willmott; S. M. Robeson; K. Matsuura, “A refined index of model performance”, Int. J. Climatol, vol. 32, no. 13, pp. 2088-2094, Sep. 2011. http://dx.doi.org/10.1002/joc.2419

S. Genić; I. Arandjelović; P. Kolendić; M. Jarić; N. Budimir; V. Genić, “A Review of Explicit approximations of Colebrook’s Equation”, FME Transactions, vol. 39, no. 2, pp.67-71, Jun. 2011. https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2011/1451-20921102067G.pdf

A. P. de Camargo; B. Molle; S. Tomas; J. A. Frizzone, “Assessment of clogging effects on lateral hydraulics: proposing a monitoring and detection protocol”, Irrig Sci, vol. 32, no. 3, pp. 181-191, Dec. 2013. http://dx.doi.org/10.1007/s00271-013-0423-z

A. P. de Camargo; P. C. Sentelhas, “Performance Evaluation of different potential Evapotranspiration estimating methods in the state of São Paulo, Brazil”, Revista Brasileira de Agrometeorologia, vol. 5, no. 1, pp. 89-97, Jan. 1997. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=1230313

M. H. Ali; I. Abustan, “A New Novel Index for Evaluating Model Performance”, Journal of Natural Resources and Development, vol. 4, pp. 1-9, Jan. 2014. http://dx.doi.org/10.5027/jnrd.v4i0.01

A. Netto; M. Fernández; Manual de hidráulica, 9th ed. São Paulo: Edgard Blücher Ltda, 2015.

How to Cite
[1]
A. . Arumugam, S. Subramani, H. Kibrom, M. Gebreamlak, M. Mengstu, and M. Teame, “Comparison and Validation of Models for the Design of Optimal Economic Pipe Diameters: A Case Study in the Anseba Region, Eritrea”, TecnoL., vol. 24, no. 52, p. e1992, Dec. 2021.

Downloads

Download data is not yet available.
Published
2021-12-01
Section
Research Papers

Altmetric

Some similar items: