Techno-Economic Evaluation of a Skimmed Milk Powder Production Process

Keywords: Dried skim milk, techno-economic assessment, sensitivity study, corporate profitability

Abstract

Milk powder is a highly demanded food that is used in various ways, both in the industrial area and in everyday life. In the present work, an innovative and unprecedented techno-economic evaluation of a technological proposal for a skimmed milk powder production plant with an annual capacity of 700 tons was carried out through the use of the SuperPro Designer® simulator, in order to know its main economic and profitability indicators under the current economic conditions in Cuba. For economic performance evaluation, the total capital investment, unit production cost, internal rate of return (IRR), net present value (NPV) and project payback time (PT) among other indicators, were determined. A sensitivity study was also accomplished, to determine from what value of the fluid milk unit cost the proposed skimmed milk powder plant begins to be unprofitable. A total capital investment of USD 22 744 000, an annual operating cost of USD 9 884 000, a working capital of USD 647 000 and a unit production cost of USD 352.95 per 25 kg bag were obtained. From the techno-economic results obtained, it can be concluded that the evaluated skimmed milk powder production plant is profitable and feasible due to the values of NPV (USD 14 475 000), IRR (18.98 %) and PT (4.46 years) obtained. The proposed production plant becomes unprofitable from a value of the fluid milk unit cost of USD 1.32/L.

Author Biographies

Amaury Pérez Sánchez *, Universidad de Camagüey “Ignacio Agramonte Loynaz, Cuba

Universidad de Camagüey “Ignacio Agramonte Loynaz”, Camagüey-Cuba, amaury.psanchez@reduc.edu.cu

Vladimir Olivera Romero, Fábrica de Leche en Polvo Camagüey, Cuba

Fábrica de Leche en Polvo Camagüey, Camagüey-Cuba, vladimirolivera071@gmail.com

References

M. T. Munir, Y. Zhang, W. Yu, D. I. Wilson, and B. R. Young, “Virtual milk for modelling and simulation of dairy processes,” J Dairy Sci, vol. 99, no. 5, pp. 3380–3395, May. 2016, https://doi.org/10.3168/jds.2015-10449

S. D. Kalyankar, M. A. Deshmukh, S. S. Chopde, C. D. Khedkar, V. K. Lule, and S. S. Deosarkar, “Milk Powder,” in Encyclopedia of Food and Health, vol. 3, B. Caballero, P. Finglas, and F. Toldrá, Eds. Oxford: Elsevier, 2016, pp. 724–728. https://doi.org/10.1016/B978-0-12-384947-2.00465-7

A. Sharma, A. H. Jana, and R. S. Chavan, “Functionality of Milk Powders and Milk-Based Powders for End Use Applications-A Review,” Compr Rev Food Sci Food Saf, vol. 11, no. 5, pp. 518–528, Sep. 2012, https://doi.org/10.1111/j.1541-4337.2012.00199.x

M. R. W. Walmsley, T. G. Walmsley, M. J. Atkins, and J. R. Neale, “Sustainable milk powder production using enhanced process integration and 100 % renewable energy,” Chem Eng Trans, vol. 52, pp. 559–564, 2016, https://doi.org/10.3303/CET1652094

J. Bon, G. Clemente, H. Vaquiro, and A. Mulet, “Simulation and optimization of milk pasteurization processes using a general process simulator (ProSimPlus),” Comput Chem Eng, vol. 34, no. 3, pp. 414–420, Mar. 2010, https://doi.org/10.1016/j.compchemeng.2009.11.013

Y. Zhang, M. T. Munir, I. Udugama, W. Yu, and B. R. Young, “Modelling of a milk powder falling film evaporator for predicting process trends and comparison of energy consumption,” J Food Eng, vol. 225, pp. 26–33, May. 2018, https://doi.org/10.1016/j.jfoodeng.2018.01.016

C. Ramírez, M. Patel, and K. Blok, “From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry,” Energy, vol. 31, no. 12, pp. 1984–2004, Sep. 2006, https://doi.org/10.1016/j.energy.2005.10.014

L. R. Díaz Chavez, L. Zumalacárregui de Cárdenas, O. Pérez Ones, and G. A. González Pedroso, “Evaluación del proceso de producción de glucosa a partir de sacarosa en la UEB Argentina,” Tecnología Química, vol. 40, no. 3, pp. 611–626, Nov. 2020, [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852020000300611

L. Canizales, F. Rojas, C. A. Pizarro, N. H. Caicedo-Ortega, and M. F. Villegas-Torres, “SuperPro Designer®, User-Oriented Software Used for Analyzing the Techno-Economic Feasibility of Electrical Energy Generation from Sugarcane Vinasse in Colombia,” Processes, vol. 8, no. 9, p. 1180, Sep. 2020, https://doi.org/10.3390/pr8091180

A. Roussos, N. Misailidis, A. Koulouris, F. Zimbardi, and D. Petrides, “A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis,” Processes, vol. 7, no. 10, p. 667, Sep. 2019, https://doi.org/10.3390/pr7100667

N. A. Sayar, O. Pinar, D. Kazan, and A. A. Sayar, “Bioethanol Production From Turkish Hazelnut Husk Process Design and Economic Evaluation,” Waste Biomass Valorization, vol. 10, no. 4, pp. 909–923, Apr. 2019, https://doi.org/10.1007/s12649-017-0103-y

L. Niño, G. Gelves, and S. Hernandez, “Industrial-Scale bioprocess simulation of polyphenol production using superpro designer,” Journal of Engineering Science and Technology, vol. 16, no. 3 pp. 2100–2113, Jun. 2021, [Online]. Available: http://repositorio.ufps.edu.co/handle/ufps/300

R. G. Ferreira, A. R. Azzoni, M. H. A. Santana, and D. Petrides, “Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation,” Processes, vol. 9, no. 2, p. 241, Jan. 2021, https://doi.org/10.3390/pr9020241

L. Campos-Ramírez, A. Pérez-Sánchez, A. Benítez-Legrá, and I. Benítez, “Estudio técnico-económico de dos tecnologías de producción de biodiesel a partir de aceite de soya empleando el simulador superpro designer,” TecnoLógicas, vol. 23, no. 48, pp. 119–141, May. 2020, https://doi.org/10.22430/22565337.1568

P. M. Tomasula, W. C. F. Yee, A. J. McAloon, D. W. Nutter, and L. M. Bonnaillie, “Computer simulation of energy use, greenhouse gas emissions, and process economics of the fluid milk process,” J Dairy Sci, vol. 96, no. 5, pp. 3350–3368, May. 2013, https://doi.org/10.3168/jds.2012-6215

P. M. Tomasula et al., “Computer simulation of energy use, greenhouse gas emissions, and costs for alternative methods of processing fluid milk,” J Dairy Sci, vol. 97, no. 7, pp. 4594–4611, Jul. 2014, https://doi.org/10.3168/jds.2013-7546

M. Madoumier, C. Azzaro-Pantel, G. Tanguy, and G. Gésan-Guiziou, “Modelling the properties of liquid foods for use of process flowsheeting simulators: Application to milk concentration,” J Food Eng, vol. 164, pp. 70–89, Nov. 2015, https://doi.org/10.1016/j.jfoodeng.2015.04.023

A. Pérez Sánchez, L. Crespo-Zafra, L. Ramos-López, E. García-Noa, and L. Matos-Mosqueda, “Estudio técnico-económico de la producción de leche de cabra en polvo,” Revista EIA, vol. 17, no. 33, pp. 1–13, Feb. 2020, https://doi.org/10.24050/reia.v17i33.1330

S. Benoit, M. Margni, C. Bouchard, and Y. Pouliot, “A workable tool for assessing eco-efficiency in dairy processing using process simulation,” J Clean Prod, vol. 236, p. 117658, Nov. 2019, https://doi.org/10.1016/j.jclepro.2019.117658

M. Guetouache, B. Guessas, and S. Medjekal, “Composition and nutritional value of raw milk,” Issues in Biological Sciences and Pharmaceutical Research, vol. 2, no. 10, pp. 115–122, Dec. 2014, https://doi.org/10.15739/ibspr.005

T. Brown, Engineering Economics and Economic Design for Process Engineers, 1st ed. Boca Raton, USA: CRC Press, 2016. https://doi.org/10.1201/b15877

Matche, “Chemical Equipment Cost,” 2014. http://matche.com/equipcost/Default.html. (Accessed Feb. 10, 2022).

R. Turton, J. A. Shaeiwitz, D. Bhattacharyya, and W. B. Whiting, Analysis, Synthesis, and Design of Chemical Processes, 5th ed. New York, USA: Prentice Hall, 2018. [Online]. Available: https://books.google.com.co/books?id=eV5gDwAAQBAJ

D. W. Green and M. Z. Southard, Perry’s Chemical Engineers’ Handbook, 9th edition. New York, USA: McGraw-Hill Education, 2019. [Online]. Available: https://www.accessengineeringlibrary.com/content/book/9780071834087

R. Sinnott and G. Towler, Chemical Engineering Design, 6th ed. Butterworth-Heinemann, United Kingdom: Elsevier, 2020. https://doi.org/10.1016/C2017-0-01555-0

S. Jenkins, “Economic Indicators,” Chemical Engineering, vol. 129, no. 3, p. 48, Mar. 2022, [Online]. Available: https://www.nxtbook.com/accessintelligence/ChemicalEngineering/chemical-engineering-march-2022/index.php#/p/48

R. G. Harrison, P. W. Todd, S. R. Rudge, and D. P. Petrides, Bioseparations Science and Engineering, 2nd ed. Oxford University Press, 2015. https://doi.org/10.1093/oso/9780195391817.001.0001

D. G. Vučurović, S. N. Dodić, S. D. Popov, J. M. Dodić, and J. A. Grahovac, “Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept,” Bioresour Technol, vol. 104, pp. 367–372, Jan. 2012, https://doi.org/10.1016/j.biortech.2011.10.085

C. S. Lee, M. F. Chong, E. Binner, R. Gomes, and J. Robinson, “Techno-economic assessment of scale-up of bio-flocculant extraction and production by using okra as biomass feedstock,” Chemical Engineering Research and Design, vol. 132, pp. 358–369, Apr. 2018, https://doi.org/10.1016/j.cherd.2018.01.050

S. S. Deosarkar, C. D. Khedkar, S. D. Kalyankar, and A. R. Sarode, “Cream: Types of Cream,” in Encyclopedia of Food and Health, vol. 2, B. Caballero, P. M. Finglas, and F. Toldrá, Eds. Oxford: Elsevier, 2016, pp. 331–337. https://doi.org/10.1016/B978-0-12-384947-2.00205-1

B. M. Mehta, “Chemical Composition of Milk and Milk Products,” in Handbook of Food Chemistry, P. C. K. Cheung and B. M. Mehta, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 511–553. https://doi.org/10.1007/978-3-642-36605-5_31

G. Baca, Evaluación de proyectos, 6ta ed. New York, USA: McGraw-Hill, 2010. [Online]. Available: http://www.repositoriodigital.ipn.mx/handle/123456789/5438

D. I. Bocci and M. R. Casas, “Producción de Leche en Polvo Entera, Parcialmente Descremada y Descremada. Estudio de Prefactibilidad,” Proyecto Final, Universidad Nacional de Cuyo, Mendoza, Argentina, 2013. [Online]. Available: https://bdigital.uncu.edu.ar/7878

Ministry of Economic Affairs Royal Government of Bhutan, “Detailed Feasibility Report - Milk Powder Production Unit,” Ministry of Economic Affairs, Royal Government of Bhutan, Timbu, Bhutan, Jun. 2015. [Online]. Available: https://www.moea.gov.bt/wp-content/uploads/2017/07/Milk-powder.pdf

S. Upadhyay, “Energy analysis of milk powder production line,” M.S. thesis, Czech technical university Prague, Prague, Czech Republic, 2019. [Online]. Available: http://hdl.handle.net/10467/84893

How to Cite
[1]
A. Pérez Sánchez and V. Olivera Romero, “Techno-Economic Evaluation of a Skimmed Milk Powder Production Process”, TecnoL., vol. 25, no. 55, p. e2381, Sep. 2022.

Downloads

Download data is not yet available.
Published
2022-09-20
Section
Research Papers

Altmetric

Some similar items: