Computational calculation of the magnetic properties of MnO/ZnO superlattice

  • Miguel J. Espitia-Rico Universidad Distrital Francisco José de Caldas,
  • John H. Díaz-Forero Universidad Distrital Francisco José de Caldas, Bogotá
Keywords: DFT, superlattice, magnetic properties, magnetic moment, half-metallic ferromagnetism

Abstract

First-principle calculations were performed in order to investigate the structural, electronic and magnetic properties of 1x1 MnO/ZnO superlattice in the wurtzite-type structure. The full-potential linearized augmented-plane-wave (FP-LAPW) method was used, as implemented in the WIEN2k computational code. Exchange and correlation effects are treated using the generalized gradient approximation (GGA) of PerdewBurke-Ernzerhof (PBE). The analyze of the structural properties show that the value of the bulk moduli is high, therefore is quite rigid and this feature makes them good candidates for possible application in devices that have to operate at high temperatures, under high power, and in hard coatings. The electronic density studies show that the MnO/ZnO superlattice have a half-metallic behavior with a magnetic spin polarization of 100% and a magnetic moment of 5 µβ/atom-Mn in the ground state. The ferromagnetic state comes from the hybridization of the Mn-3d and O-2p states that cross the Fermi level. This superlattice is a good candidate for spintronic applications.

Author Biographies

Miguel J. Espitia-Rico, Universidad Distrital Francisco José de Caldas,
Ph.D. en Ciencias Física, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá
John H. Díaz-Forero, Universidad Distrital Francisco José de Caldas, Bogotá
Ms.C. en Ciencias Física, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá

References

S. Limpijumnong and S. Jungthawan, “First-principles study of the wurtzite-to-rocksalt homogeneous transformation: A case of a low-transformation barrier,” Phys. Rev. B, vol. 70, no. 5, p. 054104, Aug. 2004.

H. Wamg, C. Xie, W. Zhang, S. Cai, Z. Yang, and Y. Gui, “Comparison of dye degradation efficiency using ZnO powders with various size scales,” J. Hazard. Mater., vol. 141, no. 3, pp. 645–652, Mar. 2007.

S. Hong, T. Joo, W. Il Park, Y. H. Jun, and G.-C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Appl. Phys. Lett., vol. 83, no. 20, p. 4157, 2003.

J. Schulz, H. Hohenberg, F. Pflücker, E. Gärtner, T. Will, S. Pfeiffer, R. Wepf, V. Wendel, H. Gers-Barlag, and K.-P. Wittern, “Distribution of sunscreens on skin,” Adv. Drug Deliv. Rev., vol. 54, pp. S157–S163, Nov. 2002.

Y. D. L. J.Q. Xu Y.P. Chen and J. N. Shen, “Gas sensing properties of ZnO nanorods prepared by hydrothermal method,” J. Mater. Sci., vol. 40 (11), pp. 2919–2921, 2005.

J. Zhou, N. S. Xu, and Z. L. Wang, “Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures,” Adv. Mater., vol. 18, no. 18, pp. 2432–2435, Sep. 2006.

M. Kaminska, A. Twardowski, and D. Wasik, “Mn and other magnetic impurities in GaN and other III–V semiconductors – perspective for spintronic applications,” J. Mater. Sci. Mater. Electron., vol. 19, no. 8–9, pp. 828–834, Sep. 2008.

D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, “Ferromagnetism in Fe-doped ZnO nanocrystals: Experiment and theory,” Phys. Rev. B, vol. 75, no. 14, p. 144404, Apr. 2007.

M. H. F. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A. R. Raju, C. Rout, and U. V Waghmare, “First Principles Based Design and Experimental Evidence for a ZnO-Based Ferromagnet at Room Temperature,” Phys. Rev. Lett., vol. 94, no. 18, p. 187204, May 2005.

J. Mera, C. Córdoba, J. Doria, A. Gómez, C. Paucar, D. Fuchs, and O. Morán, “Structural and magnetic properties of Zn1−xMnxO nanocrystalline powders and thin films,” Thin Solid Films, vol. 525, pp. 13–19, Dec. 2012.

K. Schwarz, P. Blaha, and S. B. Trickey, “Electronic structure of solids with WIEN2k,” Mol. Phys., vol. 108, no. 21–23, pp. 3147–3166, Nov. 2010.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996.

M. F. D, “The Compressibility of media under pressure,” Proc. Natl. Acad. Sci. U.S.A, vol. 30 (9), pp. 244–247, 1944.

R. F. Zhang and S. Veprek, “Phase stabilities and spinodal decomposition in the Cr1−xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparison with the Ti1−xAlxN and TiN/Si3N4 systems,” Acta Mater., vol. 55, no. 14, pp. 4615–4624, Aug. 2007.

S. H. Sheng, R. F. Zhang, and S. Veprek, “Phase stabilities and thermal decomposition in the Zr1−xAlxN system studied by ab initio calculation and thermodynamic modeling,” Acta Mater., vol. 56, no. 5, pp. 968–976, Mar. 2008.

X.-G. Xu, H.-L. Yang, Y. Wu, D.-L. Zhang, and Y. Jiang, “A first-principles study of the magnetic properties in boron-doped ZnO,” Chinese Phys. B, vol. 21, no. 4, p. 047504, Apr. 2012.

P. C. W. López and J. A. Rodríguez, “Estabilidad y estructura electrónica del ZnO,” Rev. Colomb. Física, vol. 43 (1), pp. 262–265, 2011.

S. K. Neogi, R. Karmakar, A. K. Misra, A. Banerjee, D. Das, and S. Bandyopadhyay, “Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase,” J. Magn. Magn. Mater., vol. 346, pp. 130–137, Nov. 2013.

S. Desgreniers, “High-density phases of ZnO: Structural and compressive parameters,” Phys. Rev. B, vol. 58, no. 21, pp. 14102–14105, Dec. 1998.

M. E. C. Vargas-Hernández and R. Báez, “Half-metallic ferromagnetism of ZnxMn1-xO compounds: A first-principles study,” Comput. Condens. Matter, vol. 4, pp. 1–5, 2015.

X. Y. Cui, B. Delley, A. J. Freeman, and C. Stampfl, “Magnetic Metastability in Tetrahedrally Bonded Magnetic III-Nitride Semiconductors,” Phys. Rev. Lett., vol. 97, no. 1, p. 016402, Jul. 2006.

S. Picozzi and M. Ležaić, “Ab-initio study of exchange constants and electronic structure in diluted magnetic group-IV semiconductors,” New J. Phys., vol. 10, no. 5, p. 055017, May 2008.

S.-H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, “Electronic mechanism of hardness enhancement in transition-metal carbonitrides,” Nature, vol. 399, no. 6732, pp. 132–134, May 1999.

How to Cite
[1]
M. J. Espitia-Rico and J. H. Díaz-Forero, “Computational calculation of the magnetic properties of MnO/ZnO superlattice”, TecnoL., vol. 19, no. 36, pp. 41–48, Jan. 2016.

Downloads

Download data is not yet available.
Published
2016-01-30
Section
Research Papers

Altmetric

Crossref Cited-by logo

Some similar items: