Pensamiento científico en la educación secundaria: acercamiento al estado de la cuestión

Palabras clave: cultura científica, educación secundaria, habilidades científicas, pensamiento científico, razonamiento científico

Resumen

Este artículo presenta el acercamiento al estado de la cuestión, el cual refiere la situación actual del conocimiento sobre el desarrollo del pensamiento científico en estudiantes de educación secundaria en el ámbito internacional. Con el objetivo de sistematizar las perspectivas investigativas en campos temáticos y enfoques conceptuales, se realizó una revisión analítica a través de mapeamiento informacional bibliográfico de artículos de investigación publicados entre 2011 y 2021 en las bases de datos de Redalyc, Scopus y Web of Science. Los resultados describen la relación entre tres enfoques conceptuales denominados: perspectiva política, perspectiva pedagógico-didáctica y perspectiva filosófica y once campos temáticos, que exponen el interés que existe en la educación secundaria de operativizar esta forma de pensamiento y fortalecer el desarrollo de habilidades, capacidades, actitudes y competencias a través de estrategias pedagógicas y didácticas articuladas a directrices políticas y curriculares, que permitan la aprehensión de los dominios generales y particulares de la ciencia, para aportar a la construcción de una cultura científica global. Se concluye que es necesario propender porque el desarrollo de este pensamiento resulte consecuente con las necesidades sociales, políticas y éticas de los estudiantes de secundaria, así como profundizar en su comprensión conceptual, dada su naturaleza histórica, compleja y multidisciplinar.

Biografía del autor/a

Diana Gissell Martínez-Suárez, Universidad Pedagógica y Tecnológica de Colombia

Tunja, Colombia. Correo electrónico: diana.martinez23@uptc.edu.co

Referencias bibliográficas

Albertos Gómez, D., De la Herrán Gascón, A. (2018). Desarrollo del pensamiento crítico en estudiantes de educación secundaria: diseño, aplicación y evaluación de un programa educativo. Profesorado. Revista de Currículum y Formación de Profesorado, v. 22, n. 4, 269-285. https://doi.org/10.30827/profesorado.v22i4.8416

Alcocer Tocora, M., Hernández Hernández, C. (2020). Investigación en enseñanza de las ciencias en Colombia: estudio desde sus cosificaciones. Educación y Educadores, v. 23, n. 1, 47-68. https://doi.org/10.5294/edu.2020.23.1.3

André, C. F. (2009). A prática da pesquisa e mapeamento informacional bibliográfico apoiados por recursos tecnológicos: impactos na formação de professores [Tesis doctoral, Universidade de São Paulo]. https://doi.org/10.11606/T.48.2009.tde-15122009-095048

Arias Monge, M., Navarro Camacho, M. (2017). Epistemología, Ciencia y Educación Científica: premisas, cuestionamientos y reflexiones para pensar la cultura científica. Revista Electrónica “Actualidades Investigativas en Educación”, v. 17, n. 3, 1-20. https://doi.org/10.15517/aie.v17i3.29878

Asmoro, S. P., Suciati, Prayitno, B. A. (2021). Empowering Scientific Thinking Skills of Students with Different Scientific Activity Types through Guided Inquiry. International Journal of Instruction, v. 14, n. 1, 947-962. https://doi.org/10.29333/iji.2021.14156a

Astuti, T. N., Sugiyarto, K. H., Ikhsan, J. (2020). Effect of 3D Visualization on Students’ Critical Thinking Skills and Scientific Attitude in Chemistry. International Journal of Instruction, v. 13, n. 1, 151-164. https://doi.org/10.29333/iji.2020.13110a

Barrientos-Rastrojo, J. (2019). La filosofía con niños como experiencia transformadora. una propuesta en organizaciones sin ánimo de lucro. Childhood & Philosophy, v. 15, 1-28. https://doi.org/10.12957/childphilo.2019.42276

Brigham, F. J., Scruggs, T. E., Mastropieri, M. A. (2011). Science Education and Students with Learning Disabilities. Learning Disabilities Research & Practice, v. 26, n. 4, 223-232. https://doi.org/10.1111/j.1540-5826.2011.00343.x

Cabello, V. M., Sommer Lohrmann, M. (2020). Andamios de retiro gradual. Parte 1: Visibilización del pensamiento en la construcción de explicaciones científicas escolares. Estudios pedagógicos, v. 46, n. 1, 257-267. https://doi.org/10.4067/S0718-07052020000100257

Canuto, A. T. (2018). Developing children’s reasoning and inquiry, concept analysis, and meaningmaking skills through the community of inquiry. Childhood & Philosophy, v. 14, n. 30, 427-452. https://doi.org/10.12957/childphilo.2018.28144

Cortés-Muñoz, I., Porras-Araya, M. S., Pereira-Chaves, J., Jiménez-Sánchez, S. (2020). Uso de argumentación y analogías en los procesos de preparación para las Olimpiadas Internacionales de Biología y sus aportes a la promoción de competencias de pensamiento científico en estudiantes costarricenses. Uniciencia, v. 34, n. 1, 204-218. https://doi.org/10.15359/ru.34-1.12

Costa, A. M., Ferreira, M. E., da Silva Loureiro, M. J. (2021). Scientific Literacy: The Conceptual Framework Prevailing over the First Decade of the Twenty-First Century. Revista Colombiana de Educación, v. 1, n. 81, 195-228. https://doi.org/10.17227/rce.num81-10293

Díaz, C., Dorner, B., Hussmann, H., Strijbos, J.-W. (2021). Conceptual review on scientific reasoning and scientific thinking. Current Psychology, 1-13. https://doi.org/10.1007/s12144-021-01786-5

Díaz, I., García, M. (2011). Más Allá del Paradigma de la Alfabetización. La Adquisición de Cultura Científica como Reto Educativo. Formación Universitaria, v. 4, n. 2, 3-14. https://doi.org/10.4067/S0718-50062011000200002

Dündar-Coecke, S., Tolmie, A., Schlottmann, A. (2020). Children’s reasoning about continuous causal processes: The role of verbal and non-verbal ability. British Journal of Educational Psychology, v. 90, n. 2, 364-381. https://doi.org/10.1111/bjep.12287

Erol, M., Buyuk, U., Tanik Onal, N. (2016). Rural Turkish Students’ Reactions to Learning Science in a Mobile Laboratory. Educational Sciences: Theory & Practice, v. 16, n. 1, 261-277. https://doi.org/10.12738/estp.2016.1.0171

Fang, S.-C. (2021). Towards Scientific Inquiry in Secondary Earth Science Classrooms: Opportunities and Realities. International Journal of Science and Mathematics Education, v. 19, n. 4, 771-792. https://doi.org/10.1007/s10763-020-10086-6

Fernández Mateo, J. (2020). John Dewey’s Theory of Inquiry. Quantum Physics, Ecology and the Myth of the Scientific Method. Ágora. Papeles de Filosofía, v. 40, n. 1, 133-154. https://doi.org/10.15304/ag.40.1.6659

Fitriani, A., Zubaidah, S., Susilo, H., Al Muhdhar, M. H. I. (2020). PBLPOE: A Learning Model to Enhance Students’ Critical Thinking Skills and Scientific Attitudes. International Journal of Instruction, v. 13, n. 2, 89-106. https://doi.org/10.29333/iji.2020.1327a

Franco-Mariscal, A. J. (2015). Competencias científicas en la enseñanza y el aprendizaje por investigación. Un estudio de caso sobre corrosión de metales en secundaria. Enseñanza de las Ciencias, v. 33, n. 2, 231-252. https://doi.org/10.5565/rev/ensciencias.1645

Furman, M. (2020). Aprender ciencias en las escuelas primarias de América Latina. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000375199

Galamba, A., Matthews, B. (2021). Science education against the rise of fascist and authoritarian movements: towards the development of a pedagogy for democracy. Cultural Studies of Science Education, v. 16, n. 2, 581-607. https://doi.org/10.1007/s11422-020-10002-y

García-Carmona, A., Acevedo-Díaz, J. A. (2018). The Nature of Scientific Practice and Science Education: Rationale of a Set of Essential Pedagogical Principles. Science & Education, v. 27, n. 5-6, 435-455. https://doi.org/10.1007/s11191-018-9984-9

Gardinier, M. P. (2021). Imagining globally competent learners: experts and education policy-making beyond the nation-state. Comparative Education, v. 57, n. 1, 130-146. https://doi.org/10.1080/03050068.2020.1845064

Gasparatou, R. (2017). Scientism and Scientific Thinking: A Note on Science Education. Science & Education, v. 26, n. 7-9, 799-812. https://doi.org/10.1007/s11191-017-9931-1

Gillies, R. M. (2020). Dialogic Teaching during Cooperative Inquiry-Based Science: A Case Study of a Year 6 Classroom. Education Sciences, v. 10, n. 11, 328. https://doi.org/10.3390/educsci10110328

Gillies, R. M., Rafter, M. (2020). Using visual, embodied, and language representations to teach the 5E instructional model of inquiry science. Teaching and Teacher Education, v. 87, 102951. https://doi.org/10.1016/j.tate.2019.102951

Goh, D. (2016). Expanded Understandings of the Connective Approach in Helping Students Construct Scientific Explanations. SAGE Open, 1-12. https://doi.org/10.1177/2158244016663608

Gómez Ferri, J. (2012). Cultura: sus significados y diferentes modelos de cultura científica y técnica. Revista Iberoamericana de Educación, v. 58, 15-33. https://doi.org/10.35362/rie580471

Gómez, R. L., Suárez, A. M. (2020). Do inquiry-based teaching and school climate influence science achievement and critical thinking? Evidence from PISA 2015. International Journal of STEM Education, v. 7, 43. https://doi.org/10.1186/s40594-020-00240-5

Guasch, B., González, M., Cortiñas, S. (2020). Educational Toolkit Based on Design Methodologies to Promote Scientific Knowledge Transfer in Secondary Schools: A Graphene-Centered Case Study. Journal of Technology and Science Education, v. 10, n. 1, 17-31. https://doi.org/10.3926/jotse.787

Hawken, J. (2019). Philosophical discussions with children: an opportunity for experiencing open-mindedness. childhood & philosophy, v. 15, 01-20. https://doi.org/10.12957/childphilo.2019.42982

Iordanou, K., Kuhn, D., Matos, F., Shi, Y., Hemberger, L. (2019). Learning by arguing. Learning and Instruction, v. 63, 101207. https://doi.org/10.1016/j.learninstruc.2019.05.004

Jewett, E., Kuhn, D. (2016). Social science as a tool in developing scientific thinking skills in underserved, low-achieving urban students. Journal of Experimental Child Psychology, v. 143, 154-161. https://doi.org/10.1016/j.jecp.2015.10.019

Jirout, J. J. (2020). Supporting Early Scientific Thinking Through Curiosity. Frontiers in Psychology, v. 11, 1-7. https://doi.org/10.3389/fpsyg.2020.01717

Klahr, D., Zimmerman, C., Jirout, J. (2011). Educational Interventions to Advance Children’s Scientific Thinking. Science, v. 333, n. 6045, 971-975. https://www.researchgate.net/publication/51581609_Educational_Interventions_to_Advance_Children's_Scientific_Thinking

Koerber, S., Mayer, D., Osterhaus, C., Schwippert, K., Sodian, B. (2015). The Development of Scientific Thinking in Elementary School: A Comprehensive Inventory. Child Development, v. 86, n. 1, 327-336. https://doi.org/10.1111/cdev.12298

Koerber, S., Osterhaus, C. (2021). Science competencies in kindergarten: a prospective study in the last year of kindergarten. Unterrichtswiss, v. 49, 117-136. https://doi.org/10.1007/s42010-020-00093-5

Kuhn, D. (2016). What Do Young Science Students Need to Learn About Variables? Science Education, v. 100, n. 2, 392-403. https://doi.org/10.1002/sce.21207

Lampert, Y. (2020). Teaching the Nature of Science from a Philosophical Perspective. Science & Education, v. 29, n. 5, 1417-1439. https://doi.org/10.1007/s11191-020-00149-z

Leng, L. (2020). The Role of Philosophical Inquiry in Helping Students Engage in Learning. Frontiers in Psychology, v. 11, n. 449, 1-12. https://doi.org/10.3389/fpsyg.2020.00449

León Díaz, F., Duque Bedoya, E., Escobar Ibarra, P. (2018). Estrategias de formulación de preguntas de calidad mediadas por realidad aumentada para el fortalecimiento del pensamiento científico. Revista Mexicana de Investigación Educativa, v. 23, n. 78, 791-815. http://www.scielo.org.mx/pdf/rmie/v23n78/1405-6666-rmie-23-78-791.pdf

Lindahl, M. G., Folkesson, A.-M. (2016). Attitudes and Language Use in Group Discussions on Socio-Scientific Issues. Eurasia Journal of Mathematics, Science & Technology Education, v. 12, n. 2, 283-301. https://doi.org/10.12973/eurasia.2016.1214a

Lindholm, M. (2018). Promoting Curiosity? Possibilities and Pitfalls in Science Education. Science & Education, v. 27, n. 9-10, 987-1002. https://doi.org/10.1007/s11191-018-0015-7

Lipman, M. (2016). El lugar del pensamiento en la educación. Octaedro. https://www.academia.edu/37990508/El_lugar_del_pensamiento_en_la_educaci%C3%B3n

Marušić, M., Sliško, J. (2012). Influence of Three Different Methods of Teaching Physics on the Gain in Students' Development of Reasoning. International Journal of Science Education, v. 34, n. 2, 301-326. https://doi.org/10.1080/09500693.2011.582522

Mejía Jiménez, M. R. (2020). Educación(es), escuela(s) y pedagogía(s) en la cuarta revolución industrial desde nuestra América. Ediciones desde abajo.

Ministerio de Educación Nacional de Colombia. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Guía sobre lo que los estudiantes deben saber y saber hacer con lo que aprenden. https://www.mineducacion.gov.co/1621/articles-340021_recurso_1.pdf

Ministerio de Educación Nacional de Colombia. (2017). Plan Nacional Decenal de Educación 2016 2026. El camino hacia la calidad y la equidad. https://siteal.iiep.unesco.org/sites/default/files/sit_accion_files/siteal_colombia_0404.pdf

Morris, B. J., Croker, S., Zimmerman, C., Gill, D., Romig, C. (2013). Gaming science: the “Gamification” of scientific thinking. Frontiers in Psychology, v. 4, 607. https://doi.org/10.3389/fpsyg.2013.00607

Murphy, P. K., Firetto, C. M., Greene, J. A. (2017). Enriching Students’ Scientific Thinking Through Relational Reasoning: Seeking Evidence in Texts, Tasks, and Talk. Educational Psychology Review, v. 29, n. 1, 105-117. https://doi.org/10.1007/s10648-016-9387-x

Murphy, P. K., Greene, J. A., Allen, E., Baszczewski, S., Swearingen, A., Wei, L., Butler, A. M. (2018). Fostering High School Students’ Conceptual Understanding and Argumentation Performance in Science Through Quality Talk Discussions. Science Education, v. 102, n. 6, 1239-1264. https://doi.org/10.1002/sce.21471

Nowak, K. H., Nehring, A., Tiemann, R., Upmeier zu Belzen, A. (2013). Assessing students’ abilities in processes of scientific inquiry in biology using a paper-and-pencil test. Journal of Biological Education, v. 47, n. 3, 182-188. https://doi.org/10.1080/00219266.2013.822747

Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura. (2017). Educación para los Objetivos de Desarrollo Sostenible. Objetivos de aprendizaje. https://www.researchgate.net/publication/325570670_Educacion_para_los_Objetivos_de_Desarrollo_Sostenible_Objetivos_de_aprendizaje

Organización de las Naciones Unidas. (s.f.). Objetivo 4: Garantizar una educación inclusiva, equitativa y de calidad y promover oportunidades de aprendizaje durante toda la vida para todos. https://www.un.org/sustainabledevelopment/es/education/

Ortega-Quevedo, V., Gil Puente, C. (2020). La evaluación formativa como elemento para visibilizar el desarrollo de competencias en ciencia y tecnología y pensamiento crítico. Publicaciones, v. 50, n. 1, 275-291. https://doi.org/10.30827/publicaciones.v50i1.15977

Osborne, J. (2013). The 21st century challenge for science education: Assessing scientific reasoning. Thinking Skills and Creativity, v. 10, 265-279. https://doi.org/10.1016/j.tsc.2013.07.006

Palacios-Bernuy, E., Ocaña-Fernández, Y., Valenzuela-Fernández, L. A. (2020). Effect of the API Program on the Scientific Inquiry of students in regular basic education in Lima. International Journal of Early Childhood Special Education, v. 12, n. 1, 398-405. https://doi.org/10.9756/INT-JECSE/V12I1.201019

Paristiowati, M., Cahyana, U., Irsa Setara Bulan, B. (2019). Implementation of Problem-based Learning – Flipped Classroom Model in Chemistry and Its Effect on Scientific Literacy. Universal Journal of Educational Research, v. 7, n. 9A, 56-60. https://doi.org/10.13189/ujer.2019.071607

Plaisance, K. S., Michaud, J., McLevey, J. (2021). Pathways of influence: understanding the impact of philosophy of science in scientifc domains. Synthese. v. 199, 1-32. https://doi.org/10.1007/s11229-020-03007-1

Putranta, H., Supahar, S. (2019). Development of Physics-Tier Tests (PysTT) to Measure Students' Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis. Journal for the Education of Gifted Young Scientists, v. 7, n. 3, 747-775. https://doi.org/10.17478/jegys.587203

Rind, I. A., Ning, B. (2020). Evaluating scientific thinking among Shanghai’s students of high and low performing schools. The Journal of Educational Research, v. 113, n. 5, 364-373. https://doi.org/10.1080/00220671.2020.1832430

Ristanto, R. H., Djamahar, R., Heryanti, E., Ichsan, I. Z. (2020). Enhancing Students' Biology-Critical Thinking Skill through CIRC-Based Scientific Approach (Cirsa). Universal Journal of Educational Research, v. 8, n. 4A, 1-8. https://doi.org/10.13189/ujer.2020.081801

Rumahlatu, D., Sangur, K., Liline, S. (2020). The Effect of Complex Instruction Team Product (CITP) Learning Model on Increase Student’s Skills. International Journal of Instruction, v. 13, n. 1, 587-606. https://doi.org/10.29333/iji.2020.13138a

Sanabria Rojas, Q. A. (2016). Diversidad cultural en la enseñanza de las ciencias y perspectiva de género: Mapeamiento informacional bibliográfico (MIB). Tecné, Episteme y Didaxis: TED, n. Extraordinario. https://revistas.pedagogica.edu.co/index.php/TED/article/view/4792

Sengul, O. (2019). Linking Scientific Literacy, Scientific Argumentation, and Democratic Citizenship. Universal Journal of Educational Research, v. 7, n. 4, 1090-1098. https://doi.org/10.13189/ujer.2019.070421

Soysal, Y. (2021). Talking Science: Argument-Based Inquiry, Teachers’ Talk Moves, and Students’ Critical Thinking in the Classroom. Science & Education, v. 30, 33-65. https://doi.org/10.1007/s11191-020-00163-1

Suciati, Ali, M. N., Imaningtyas, C. D., Anggraini, A. F., Dermawan, Z. (2018). The Profile of XI Grade Students’ Scientificthinking Abilities on Scientific Approach Implementation. Jurnal Pendidikan IPA Indonesia, v. 7, n. 3, 341-346. https://doi.org/10.15294/jpii.v7i3.15382

Sumarni, W., Kadarwati, S. (2020). Ethno-Stem Project-Based Learning: its Impact to Critical and Creative Thinking Skills. Jurnal Pendidikan IPA Indonesia, v. 9, n. 1, 11-21. https://doi.org/10.15294/jpii.v9i1.21754

Swanson, H., Collins, A. (2019). Learning to Theorize in a Complex and Changing World. Foresight and STI Governance, v. 13. n. 2, 98-106. https://doi.org/10.17323/2500-2597.2019.2.98.106

Taber, K. S. (2017). Knowledge, beliefs and pedagogy: how the nature of science should inform the aims of science education (and not just when teaching evolution). Cultural Studies of Science Education, v. 12, 81-91. https://doi.org/10.1007/s11422-016-9750-8

Torres, N., Bolívar, A., Solbes, J., Parada, M. (2018). Percepciones de estudiantes universitarios sobre su formación en física en educación secundaria. Revista U.D.C.A Actualidad & Divulgación Científica, v. 21, n. 2, 599-606. https://doi.org/10.31910/rudca.v21.n2.2018.975

Torres Martínez, G. I., Guerrero Romero, J. E. (2018). El currículo de ciencias naturales en Colombia durante la segunda mitad del siglo XX: permanencias, transformaciones y rupturas. Actualidades Pedagógicas, n. 71, 63-87. https://doi.org/10.19052/ap.3885

Torres Merchán, N. Y. (2021). Promover procesos de pensamiento científico desde el uso de cuestiones socio-científicas. En E. F. Amórtegui Cedeño, J. A. Mosquera (comps.), Didáctica de las Ciencias Naturales: perspectivas latinoamericanas. Aportes a la formación del profesorado y la Educación científica (pp. 89-102). Universidad Surcolombiana. https://www.researchgate.net/publication/356439164_Didactica_de_las_Ciencias_Naturales_perspectivas_latinoamericanas_Aportes_a_la_formacion_del_profesorado_y_la_Educacion_cientifica

Toscano, M., Quay, J. (2021). Beyond a Pragmatic Account of the Aesthetic in Science Education. Science & Education, v. 30, 147-163. https://doi.org/10.1007/s11191-020-00162-2

van der Graaf, J., van de Sande, E., Gijsel, M., Segers, E. (2019). A combined approach to strengthen children’s scientific thinking: direct instruction on scientific reasoning and training of teacher’s verbal support. International Journal of Science Education, v. 41, n. 9, 1119-1138. https://doi.org/10.1080/09500693.2019.1594442

Vázquez-Alonso, Á., Manassero-Mas, M. A. (2018). Más allá de la comprensión científica: educación científica para desarrollar el pensamiento. Revista Electrónica de Enseñanza de las Ciencias, v. 17, n. 2, 309-336. http://reec.uvigo.es/volumenes/volumen17/REEC_17_2_02_ex1065.pdf

Vieira, R. M., Tenreiro-Vieira, C. (2016). Fostering Scientific Literacy and Critical Thinking in Elementary Science Education. International Journal of Science and Mathematics Education, v. 14, n. 4, 659-680. https://doi.org/10.1007/s10763-014-9605-2

Vitti Rodrigues, M., Emmeche, C. (2021). Abduction and styles of scientifc thinking. Synthese, v. 198, n. 2, 1397-1425. https://doi.org/10.1007/s11229-019-02127-7

Wahyuni, S., Sanjaya, I. G. M., Erman, E., Jatmiko, B. (2019). Edmodo-Based Blended Learning Model as an Alternative of Science Learning to Motivate and Improve Junior High School Students’ Scientific Critical Thinking Skills. International Journal of Emerging Technologies in Learning (iJET), v. 14, n. 7, 98-110. https://doi.org/10.3991/ijet.v14i07.9980

Wilder, S. (2015). Impact of problem-based learning on academic achievement in high school: a systematic review. Educational Review, v. 67, n. 4, 414-435. https://doi.org/10.1080/00131911.2014.974511

Worley, E., Worley, P. (2019). Teaching critical thinking and metacognitive skills through philosophical enquiry. A practitioner's report on experiments in the classroom. childhood & philosophy, v. 15, 1-34. https://doi.org/10.12957/childphilo.2019.46229

Yang, K.-K., Lee, L., Hong, Z.-R., Lin, H.-s. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, v. 38, n. 13, 2133-2151. https://doi.org/10.1080/09500693.2016.1230685

Yılmaz-Özcan, N., Tabak, S. (2019). The Effect of Argumentation-Based Social Studies Teaching on Academic Achievement, Attitude and Critical Thinking Tendencies of Students. International Electronic Journal of Elementary Education, v. 12, n. 2, 213-222. https://doi.org/10.26822/iejee.2019257669

Zhou, S.-N., Liu, Q.-Y., Koenig, K., Li, Q.-Y., Xiao, Y., Bao, L. (2021). Analysis of Two-Tier Question Scoring Methods: A Case Study on the Lawson’s Classroom Test of Scientific Reasoning. Journal of Baltic Science Education, v. 20, n. 1, 146-159. https://doi.org/10.33225/jbse/21.20.146

Cómo citar
Martínez-Suárez, D. G. . (2022). Pensamiento científico en la educación secundaria: acercamiento al estado de la cuestión . Trilogía Ciencia Tecnología Sociedad, 14(27), e2150. https://doi.org/10.22430/21457778.2150

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
30-05-2022
Sección
Dosier temático

Métricas